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We describe a simultaneous localization and mapping �SLAM� method for a hovering
underwater vehicle that will explore underwater caves and tunnels, a true three-
dimensional �3D� environment. Our method consists of a Rao-Blackwellized particle filter
with a 3D evidence grid map representation. We describe a procedure for dynamically
adjusting the number of particles to provide real-time performance. We also describe how
we adjust the particle filter prediction step to accommodate sensor degradation or failure.
We present an efficient octree data structure that makes it feasible to maintain the hun-
dreds of maps needed by the particle filter to accurately model large environments. This
octree structure can exploit spatial locality and temporal shared ancestry between par-
ticles to reduce the processing and storage requirements. To test our SLAM method, we
utilize data collected with manually deployed sonar mapping vehicles in the Wakulla
Springs cave system in Florida and the Sistema Zacatón in Mexico, as well as data col-
lected by the DEPTHX vehicle in the test tank at the Austin Applied Research Laboratory.
We demonstrate our mapping and localization approach with these real-world
datasets. © 2007 Wiley Periodicals, Inc.

1. BACKGROUND

Zacatón is a flooded cenote �sinkhole� in Tamaulipas,
Mexico, that has been measured at over 350 m deep
�Gary, 2002� �see Figure 1�. The depths of the cenote
remain unexplored, but during a preliminary expe-
dition in May 2005, we discovered that the upper
200 m of Zacatón is roughly a cylinder 110 m wide
that tapers slightly with depth �Figure 2�. Zacatón is

the deepest of a series of similar water-filled forma-
tions, which are thought to have formed as hydro-
thermal groundwater dissolved through a layer of
limestone �Gary, 2002�. Zacatón has a small river
flowing out through a tunnel near the surface, which
indicates that water is flowing in from somewhere be-
low the mapped regions, perhaps through navigable
tunnels.

The mineral-rich water in Zacatón supports col-
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orful microbial mats in the photic zone and has exotic
geochemical features, which make it an excellent
match for the exploration and sampling mission of
the DEep Phreatic THermal eXplorer �DEPTHX�. The
goal of the DEPTHX project is to autonomously ex-
plore and map Zacatón, including any underlying
tunnel systems, and then to use various environmen-
tal signatures �such as thermal plumes� to direct fo-
cused sample collection—with the goal of detecting
and sampling unusual microbiota. In this paper, we
address the mapping and localization capabilities re-
quired to fulfill the requirements implied by these
goals. In particular, we emphasize robustness, navi-
gation through tunnels, and precise localization in a
large volume.

A typical autonomous underwater vehicle �AUV�
uses a combination of depth sensors, inertial sensors,
and Doppler velocity sensors to compute a dead-
reckoned estimate of its position while at depth �for
an overview of underwater navigation methods, see
Leonard, Bennett, Smith & Feder �1998��. With high
accuracy attitude and depth sensors the uncertainty
in the AUV’s 3D pose �roll, pitch, yaw, x, y, z� is pri-
marily in x and y. Most underwater navigation sys-
tems are based on Kalman filters, which merge Dop-
pler velocity and inertial measurements �Larsen,
2000�. Corrections to the unbounded drift error inher-
ent in such systems have been achieved by using the
global positioning system �GPS� while on the surface
�Healey, An & Marco, 1998� or beacon-based long
baseline �LBL� acoustic positioning systems �Whit-
comb, Yoerger & Singh, 1999�. But frequently surfac-

Figure 1. At 110 m in diameter and over 350 m in depth, the cenote Zacatón in central Mexico is a unique flooded
sinkhole. A platform for conducting preliminary sonar tests is tethered in place.

Figure 2. A north-facing side view of the first 200 m of
Zacatón. This is the raw sonar data from a single dive,
plotted as a point cloud in orthographic projection.
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ing for GPS fixes may not be possible or desirable,
and LBL beacons, which are typically used in long-
duration open-water operations, must be deployed
and surveyed before use. Neither of these approaches
is viable in Zacatón. Simultaneous localization and
mapping �SLAM� offers an attractive method to
bound dead-reckoning error because it allows the ve-
hicle to be completely self-contained and
unrestricted—and it yields a map of the environment.

In Fairfield, Kantor & Wettergreen �2005� we
evaluated different sonar geometries for SLAM in 3D
underwater tunnels. In Fairfield, Kantor & Wetter-
green �2006�, we demonstrated SLAM in a con-
strained scenario with real-world sonar data from
Zacatón. In this work, we show that will be able to
perform 3D SLAM in real-time on the DEPTHX ve-
hicle. Our key innovation is our Deferred Reference
Count Octree data structure, which makes real-time
3D SLAM possible. We also introduce simple meth-
ods for adjusting the particle count in order to main-
tain real-time performance in the face of varying
world geometry and for adjusting the prediction
model in response to degraded sensor quality.

The rest of the paper is laid out as follows: Section
2 describes related work in localization, estimation,
and mapping. Section 3 outlines our approach to the
problem. Section 4 describes the map representation
and Section 5 describes the particle filter, including
the adaptive particle count and sensor-based predic-
tion. We finish with Experiments, Results, and
Conclusions.

2. RELATED WORK

2.1. Simultaneous Localization and Mapping

SLAM is the process of building a map of the envi-
ronment from sensor data, and then using that map
to localize. SLAM methods usually depend on the
detection of features from sensor data and combine
observations of these features with an extended Kal-
man filter �EKF� �Smith, Self & Cheeseman, 1990�. In
the underwater domain, sonar sensors are not ca-
pable of providing the resolution necessary to re-
solve and recognize features. There has been work
on off-line SLAM methods using tunnel cross sec-
tions, or slide images, which can be derived from
sparse sonar ranges as long as the environment is
tunnel shaped �Bradley, Silver & Thayer, 2004�. In

the case where there are free floating artificial fea-
tures, scanning sonars have been shown to have
high enough resolution to support feature-based
SLAM �Williams, Newman, Dissanayake & Durrant-
Whyte, 2000�. Alternatively, in clear water with good
lighting, SLAM has been demonstrated via video
mosaicing �Eustice, Singh, Leonard, Walter & Bal-
lard, 2005� and also a combination of vision-based
feature detection and sonar �Williams & Mahon,
2004�.

Underwater localization has also been demon-
strated in cases where there is variation in the sea-
floor and the vehicle has a prior map of the bathym-
etry �Williams, 2003; Leonard et al., 1998�. Many
underwater environments are characterized by large
monotonous regions where there has been promis-
ing work with synthetic aperture sonar �SAS� to sup-
port range-and-bearing SLAM �Newman, Leonard &
Rikoski, 2003�.

2.2. Particle Filters

As an alternative SLAM method to EKFs, particle
filters provide a proven implementation of Bayesian
filtering for systems whose belief state, process
noise, and sensor noise are modeled by nonparamet-
ric probability density functions �for a good sum-
mary of particle filters, see Arulampalam, Maskell,
Gordon & Clapp �2002��.

Fox �2003� describes Kullback-Leibler distance
�KLD� sampling, which estimates the number of
samples needed at each iteration such that the error
between the true density distribution and the dis-
crete particle filter approximation is below some
bound. This approach is applied to the bathymetry-
map localization mentioned above by Bachmann &
Williams �2003�. In short, they conclude that too few
particles will poorly approximate the true posterior
and too many particles take too long to process �so
that measurements have to be thrown away�. Our
approach uses as many particles as possible in real-
time without discarding any data.

Rao-Blackwellized particle filters �RBPFs�, in
which each particle contains both a position and a
map, have proven an effective way to do SLAM with
evidence grids �Murphy, 1999; Doucet, de Freitas,
Murphy & Russell, 2000�. This becomes important as
we consider how to incrementally map a fully 3D
environment.
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2.3. 3D Maps

In the area of 3D maps, there has been work on land
using laser range data. Thrun et al. �2003� mapped
mine tunnels with a planar floor plan using scan
matching to recover the 2D vehicle pose from which
the 3D map is reconstructed in a postprocessing
step. Other terrestrial work builds maps from planes
fitted to point clouds �Mahon & Williams, 2003;
Weingarten & Siegwart, 2005; Hähnel, Burgard &
Thrun, 2003�. Unfortunately, lasers do not maintain
coherence underwater, so they cannot be used to re-
solve fine features.

The 2D evidence grid is the classic featureless
map �Martin & Moravec, 1996�, a uniform discretiza-
tion of space with the value of each cell assigned the
probability of occupancy. Since the entire space must
be represented in memory, even two-dimensional
evidence grids are large and expensive to copy.

In the 3D evidence grid representation, space is
divided into a grid of cubic volume elements, or
voxels, which contain the occupancy evidence in-
ferred from sensors. While 2D evidence grid based
SLAM is well established in the indoor mobile robot
domain, it has limited applicability in truly 3D
environments—largely because the 2D map simplifi-
cation is only suitable in “two and a half”-
dimensional environments, meaning those where
only a single height needs to be associated with each
2D grid cell.

The latest version of distributed particle �DP�
SLAM by Eliazar & Parr �2006� is a similar approach
to ours in that it uses evidence grids, a RBPF, and a
sophisticated data structure that exploits the similar-
ity between particles of common ancestry to reduce
the cost of copying and storing particle maps. How-
ever, in order to get linear ray-tracing performance,
they must repeatedly process their data structure to
create a cache of uniform “local maps,” a complex
and memory intensive process, even for 2D maps.
The Deferred Reference Count Octree �DCRO� we
introduce below avoids this caching step and yields
the additional advantages of full 3D, sparse spatial
representation, and overlap between particles with
common ancestry—all inherent properties of the
relatively simple DRCO data structure.

3. SYSTEM DESCRIPTION

The DEPTHX vehicle �Figures 3 and 4� has a full suite
of underwater navigation sensors, including a Hon-

eywell HG2001 Inertial Measurement Unit �IMU�,
two Paroscientific Digiquartz depth sensors, and an
RDI Navigator 600 Doppler Velocity Log �DVL�.
There is also a Conductivity, Temperature, and Depth
�CTD� sensor for measuring the speed of sound so
that DVL velocity measurements can be corrected.
Under certain circumstances, these sensors can pro-
vide excellent dead-reckoned navigation—on the or-
der of 0.5% of distance traveled �Larsen, 2000�. Over
the course of a �4 h 2 km mission, this would yield
an error of around 10 m, which would be perfectly
acceptable in open water conditions but is a serious
concern within confined tunnels. Additionally, we
must anticipate that there may be times when the
DVL will not provide velocity measurements, at
which point the quality of the dead-reckoned solu-
tion will degrade significantly. In summary, we need
to be conservative about our expectations for dead-
reckoning.

In addition to the standard dead-reckoning sen-
sors, DEPTHX has a mapping system: an array of 54
pencil-beam sonars that provide a constellation of
range measurements around the vehicle. The
DEPTHX sonar array is in the shape of three great
circles �Figure 4, and for a comparison of sonar ge-
ometries see Fairfield et al. �2005��. This means that
DEPTHX will be able to observe previously mapped
regions while exploring—which is vital for SLAM.
The sonars have long ranges �some 100 m and others
200 m� but lack the resolution, update rate, and point
density of a laser scanner, making feature recognition
and association difficult. The depths of Zacatón are
completely unexplored and have unknown geom-
etries, which makes it even more difficult to design
feature detectors. For these reasons we have selected
a data-driven representation, 3D evidence grids, as
our basic world representation. The difficulty in gen-
eralizing the 2D evidence grid approach to full 3D
comes from the growth of the computational cost of
accessing, modifying, and storing the map due to the
third dimension. Likewise, there is an increase in the
number of pose dimensions that must be estimated
from three �heading, x, y� to six �roll, pitch, yaw, x, y,
z�. However, the IMU and depth sensors can provide
excellent measurements for all but x and y.

A SLAM method applied to exploration must
provide near real-time localization estimates for ve-
hicle control and navigation. While onboard compu-
tational resources are increasing, we must deal with
limited resources: 1 Gb of RAM, and a 1.8 GHz Pen-
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tium M processor for SLAM onboard the DEPTHX
vehicle. The sonar array cycles at 1 Hz, so SLAM
must run at that rate as well.

For general navigation within Zacatón, the ve-

hicle should remain more than 2 m away from the
walls. During sampling operations, the vehicle body
will approach to within 1 m when the sample arm
makes contact with the wall. Our scientist team
would like to be able to repeatably collect samples
within 1 m of a designated location, which defines
the positioning precision requirement.

The system must cope with sensors that can de-
grade suddenly in performance, or fail entirely. It can
do this by adjusting the particle distribution accord-
ing to the current sensor error models or by switching
to a localization-only mode in which the maps are not
updated. It can also adjust the particle count so as to
use as many particles as possible while maintaining
real-time performance.

We use evidence grids because they can merge to-
gether the large number of noisy sonar measure-
ments into a useful map. The Rao-Blackwellized par-
ticle filter is a natural match for evidence grids, and
also allows the algorithm to represent non-Gaussian
position distributions. Before discussing the particle
filter itself, we describe the data structure that it will
use to represent the map.

Figure 3. A model of the DEPTHX vehicle structure and components. Eleven pressure vessels house computing, batter-
ies, sensors, and science instruments. Diameter is approximately 2 m, weight 1.3 metric tons. © Stone Aerospace, 2006.

Figure 4. The DEPTHX vehicle in the test tank.
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4. EVIDENCE GRIDS

An evidence grid is a uniform discretization of space
into cells in which the value indicates the probability
or degree of belief in some property within that cell.
In 3D, the cells are cubic blocks of volume, or voxels
�see Figure 5�. The most common property is occu-
pancy, so evidence grids are often also called occu-
pancy grids �Martin & Moravec, 1996�. The primary
operations on a map are inserting new evidence, que-
rying to simulate measurements, and copying the en-
tire map. We call the process of updating all of the
voxels that are affected by a particular measurement
an “insertion,” and, likewise, the process of casting a
ray within a map until it intersects with an occupied
voxel we call a “query.” Often, the log-odds value for
each voxel �,

LO��� = log� p���
1 − p���� ,

is stored in the map rather than the raw probabilities
because it behaves better numerically, and because
the Bayesian update rule for a particular voxel ac-

cording to the sensor model �like a conic beam-
pattern� for some measurement z becomes a simple
addition �Martin & Moravec, 1996�:

The first term on the right-hand-side is the sensor
model, and the second is the map prior. If the prior
p���=0.5, the second term is zero and the initializa-
tion simply sets all voxels to zero. The update for each
voxel can be reduced to simply summing the value of
the sonar model with current voxel evidence. One im-
portant �and plainly false� assumption underlying
the Bayesian insertion is that the cells are
independent—that is that the occupancy of one cell is
independent of the occupancy of any other cell. How-
ever, without this assumption evidence grids become
intractable since the repercussions of updating a
single cell could propagate through the entire map.
The drawback is that maps tend to be more noisy in
response to ambiguity in the measurements.

4.1. Sonar Model

As measurements are collected, the evidence they
provide about the occupancy of each voxel is en-
tered into the map. A sonar beam model defines how
a single range measurement can be inserted into the
evidence grid. There are several methods that can be
used to construct a beam model, including deriving
it from physical first principles �Urick, 1983� or
learning it �Martin & Moravec, 1996�. We chose to
use the simplest reasonable approximation—a cone
with a cap that is loosely based on the beam pattern
of the sonar �see Figure 6�. The cone is drawn as a

Figure 5. A cut-away view of sonar data being inserted
into a 3D evidence grid. The vehicle is modeled as a yel-
low oblong, its sonar beams as red cones which leave
traces of evidence behind in the grid.

Figure 6. An example of the sonar beam model carved
into an evidence grid.
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bundle of rays with constant negative value, with
terminating voxels with constant positive values.
These log-odds values were experimentally chosen
to be −2 and 8. Likewise, the simplest method to
query a sonar range from the 3D evidence grid is to
trace a ray until some threshold �or other terminat-
ing condition� is met. Using matrix transformations
for each voxel is too computationally expensive for
operations such as filling in evidence cones or simu-
lating ranges. These tasks can be decomposed into
raster operations, which can be performed by a 3D
variant of the classic 2D Bresenham line drawing al-
gorithm, also called ray-tracing �Bresenham, 1965�.

4.2. Octree Data Structure

The main difficulties with 3D maps arise from the
cost of copy operations and the storage requirements
that increase with map size and resolution. If we
store the evidence log-odds as single bytes �with val-
ues between −128 and 127�, then an evidence grid
1024 cells on a side requires a megabyte of memory
in 2D and a gigabyte in 3D. A typical memory bus
can handle transfer rates of around 400 Mb/s, and
so would require over 2 s to copy such a map. In the
case of the particle filter �Section 5�, we need to store
and copy hundreds of maps per second. This re-
quires a more efficient data structure than a uniform
array; the octree is one such structure.

An octree is a tree structure composed of a node,
or octnode, which has eight children that equally sub-
divide the node’s volume into octants �Figure 7�. The
children are octnodes in turn, which recursively di-
vide the volume as far as necessary to represent the
finest resolution required. The depth of the octree
determines the resolution of the leaf nodes. The
main advantage of an octree is that the tree does not
need to be fully instantiated if pointers are used for
the links between octnodes and their children. Large
contiguous portions of an evidence grid are either
empty, occupied, or unknown, and can be efficiently
represented by a single octnode—truncating all the
children, which would have the same value. As evi-
dence accumulates, the octree can compact homoge-
neous regions that emerge, such as the large empty
volume inside a cavern. Note that even with com-
paction the octree supports the insert, query, and
copy operations and is a drop-in replacement for the
uniform array: it is possible to convert losslessly be-
tween the two representations. Insert and query can
be done with a tree-traversing ray-tracing algorithm

�see Havran �1999� for an overview�. We employ our
own Bresenham 3D top-down approach, largely for
its simplicity. Octrees have been widely used in ray-
tracing as a way to sort polygons—not to store evi-
dence, as we do here. Most applications also do not
need to copy octrees, as we do for the particle filter
�see below�. The common approach to copying an
octree is simply to traverse the entire tree copying
every node �see the “Naïve” row of Figure 8�.

To improve performance, we use our own cus-
tom memory management for the octnodes. Oct-
node memory is created as needed in large blocks
�about 10k nodes�, which are initialized as a FIFO
linked list of free nodes. The first word of each node
points to the next free node. As nodes �and entire
octrees� are freed, nodes are pushed onto the front of
this linked list. When a new node is needed, the first
entry of the linked list is pulled off and initialized
with default values.

4.2.1. Reference Counting Octree �RCO�

The first real-time challenge when using octrees is
not the ray-tracing operation, but rather copying the
maps during the resampling step of the particle fil-
ter. Copying an octree is an expensive operation, but
we can allow octrees to share subtrees by maintain-
ing reference counts to the octnodes: each node
keeps track of the number of references to itself. We
refer to this number as refCount. This means that we

Figure 7. Each level of an octree divides the remaining
volume into eight octants, but the tree does not have to be
fully expanded.
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replace naïve copying with copy-on-write �see the
“Reference Counting” row of Figure 8�. When an oc-
tree needs to be copied, we simply increment the
reference count. Then when either copy is modified
only subtrees that have a reference count greater
than one need to be copied. And of course once a
copy has been made, the reference count of the
source is decremented. We call this “copy-on-write,”
and find it useful because, in the particle filter appli-
cation, queries to the map are much more common
than insertions.

Procedure 1 DRCO COPY �A to B�
Require: A and B are pointers to octnodes
1: A→defC++;
2: LAZYFREENODE�B�; // See Procedure 2
3: B=A;

4.2.2. Deferred Reference Counting Octree �DRCO�

However, maintaining the bookkeeping for reference
counts requires a full traversal of the octree—or at
least of the modified subtree—which is almost as ex-
pensive as copying. Our novel solution is to main-

Figure 8. Octree diagram demonstrating the copy and write operations for three octree implementations: Naïve, Refer-
ence Counting, and Deferred Reference Counting. Blue �light gray� nodes are notes that must be accessed, and red �dark
gray� nodes are new nodes.
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tain deferred reference counts. Every octnode has a
refCount and also a deferred reference count, which
we will call the defCount �see the “Deferred Refer-
ence Counting” row of Figure 8�. The defCount rep-
resents reference counts that have not yet been
propagated to the children. This is similar to the
work of Baker �1994�. The true reference count of the
node is the sum of refCount and defCount—but
changes in defCount do not usually trigger a recur-
sive traversal through the subtree.

Copying a map now simply requires increment-
ing the defCount of the node pointed to by the
source, freeing the node pointed to by the destina-
tion �if it is not new�, and setting the destination
pointer to the source node �see Procedure 1�. If either
of the two copies is modified, then the copy-on-write
code will automatically push the defCount down the
tree, copy the portion of the tree that will be
changed, and set the reference counts accordingly
�see the “Deferred Reference Counting” row of Fig-
ure 8 and Procedure 3�.

LazyFreeNode applies the same deferred �or
lazy� principles to recursively freeing octnodes: if
the octnode has defCount�0, then it can just decre-
ment the defCount �see Procedure 2�: what the chil-
dren do not know will not hurt them. If the
defCount=0, then LazyFreeNode must call itself re-
cursively on the children �who may decide they do
not need to tell their children, etc.�.

The ray-trace write, or “insert,” operation in the
DRCO must deal with properly updating all these
counts—the ray-trace read, or “query,” operation is
unchanged. When we want to insert updates into a
map, copy-on-write propagates the node’s defCount
down to its children, sets the refCount=refCount
+defCount, and sets defCount=0 �since defCount
represents the reference counts that the node has not
told its children about� �see Procedure 3�. If the new
refCount is �1, the node must be copied �maintain-
ing the old connections to its children�. The deferred

updating works because the insert procedure always
starts at the top of the octree—this top-down prop-
erty is part of our ray-trace implementation. DRCOs
yield a significant performance boost and allow us
to represent maps that would not even fit into
memory as a uniform array �see Section 6�.

Procedure 2 DRCO LAZYFREENODE�N�
Require: N is a pointer to an octnode

1: if N→defC�0 then
2: N→defC--;
3: return
4: end if
5: N→ refC--;
6: for i=1. . .8 do // Recursively free children
7: LAZYFREENODE�N→child�i��;
8: end for
9: if N→ refC= =0 then // Free the node
10: N→nextNode=globalFreeNode;
11: globalFreeNode=N;
12: end if

4.2.3. Compaction

Compaction is the process of recursively traversing
the tree, replacing groups of homogeneous children
with a single parent with the same value. As regions
of the map become well explored, fuzzy compaction
can simplify regions with small amounts of noise.

Table I. Example compaction results on a test map, as
percentages of the original size of the map. Due to the
amount of noise in the real data used to construct the map,
the lossless compaction does not do much.

Original 5123 at 1 m map 100%

Lossless compaction 99.9%

�Empty, occupied	 compaction 66%

Table II. Particle filter notation.

#par number of particles

#son number of sonars

st
�m� vehicle pose of the m-th particle at time t

=�roll ,pitch,yaw,x ,y ,z�T

St
�m� trajectory of m-th particle from time 0 to t

=�s0
�m� ,s1

�m� ,s2
�m� , . . . ,st

�m�	

zt sonar measurements at time t

Zt history of measurements from time 0 to t

=�z0 ,z1 ,z2 , . . . ,zt	
nzt n-th sonar measurement at time t

ut vehicle dead-reckoned innovation at time t

Ut history of dead-reckoning from time 0 to t

=�u0 ,u1 ,u2 , . . . ,ut	

��m� map of m-th particle

� a particular voxel= ijk�

wt
�m� m-th particle weight at time t
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Periodically compacting the octrees can yield signifi-
cant space savings, especially when the map will
only be used for querying—in which case the values
can be lossily thresholded to �0=empty, 1
=occupied	 �see Table I�. Ray tracing is also acceler-
ated if the ray-tracing algorithm takes advantage of
these compacted regions.

Now that we have developed a data structure to
maintain and duplicate large 3D evidence grids effi-
ciently, we can consider how to build maps and lo-
calize using a particle filter.

Procedure 3 DRCO SETNODE�N, value�
Require: N is a pointer to an octnode, value is some constant

1: if N→defC+N→ refC�1 then
2: if N→defC�0 then
3: for i=1. . .8 do // propagate defC to children
4: if N→child�i�!=0 then
5: N→child�i�→defC+ =N→defC
6: end if
7: end for
8: end if
9: newN=NEWNODE��
10: COPYNODE�newN, N�;
11: newN→ refC=1;
12: newN→defC=0;
13: newN→value=value;
14: N→ refC=N→defC+N→ refC–1;
15: N→defC=0;
16: else
17: N→value=value;
18: end if
19: N=NEXTNODEINTOPDOWNTRAVERSE ��
20: if N !=0 then
21: SETNODE�N, value�
22: end if

5. PARTICLE FILTERING

The goal of SLAM is to estimate the probability dis-
tribution at time t over all possible vehicle states s and
world maps � using all previous sensor measure-
ments Zt and control commands Ut �for a complete
list of notation, see Table II�:

p�s,�
Zt,Ut� .

This distribution is called the SLAM posterior. The
recursive Bayesian filter formulation of the SLAM
problem is straightforward �see Montemerlo, Thrun,
Koller & Wegbreit �2002� for a derivation� but the in-
tegral is usually computationally intractable to solve
in closed form:

where � is a constant scale factor from Bayes’ rule.
The key insight of Murphy �1999� is that the

SLAM posterior distribution can be factored into two
parts, or marginals: the path distribution and the map
distribution. Furthermore, knowing the vehicle’s tra-
jectory St makes the observations Ut conditionally in-
dependent, so that the map sample � can be com-
puted in a closed form. The process of factoring a
distribution such that one part can be computed ana-
lytically is known as Rao-Blackwell factorization
�Doucet et al., 2000�. As a result, following Monte-
merlo et al. �2002� we compute the posterior over tra-
jectories. We can factor the distribution as

p�St,�
Zt,Ut� = p�St
Zt,Ut�p��
St,Zt� .

Particle filters are a Monte Carlo approximation
to the Bayesian filter. The particle filter maintains a
discrete approximation of the SLAM posterior using
a �large� set of samples, or particles. The mth instance
of the #par particles represents both a sample pose st

�m�

from the distribution of vehicle trajectories, and the
sample map ��m�, which results from that trajectory
combined with the sensor measurements Zt. Since we
update the particle maps at every time step, they rep-
resent the combination of sensor measurements and
vehicle trajectory—so each particle only needs to
store the current map ��m� and pose st

�m� �rather than
the whole trajectory St

�m��.
For practical purposes, when SLAM is being used

to provide a pose for the rest of the vehicle control
software, we usually want to turn the set particles
into a single point estimate. If the posterior distribu-
tion is Gaussian, then the mean is a good estimator,
but other estimators may be better if the distribution
becomes non-Gaussian.

The particle filter algorithm has the following
steps:

Initialize. The particles start with their poses s0
initialized according to some initial distribution and
their maps � �possibly� containing some prior infor-
mation about the world. This is called the prior
distribution.
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Predict. The dead-reckoned position innovation
ut is computed using the navigation sensors �IMU,
DVL, and depth sensor�. A new position st is pre-
dicted for each particle using the vehicle motion
model �see Table III�:

st = h�st−1,ut,N�0,�u�� .

This new distribution of the particles is called the pro-
posal distribution.

Weight. The weight w for each particle is com-
puted using the measurement model and the sonar
range measurements �from the #son different sonars�:

w = ��
n=1

#son

p�nzt
st,�� ,

where � is some constant normalizing factor �differ-
ent than the one used in the expression for the Baye-
sian filter�. In our implementation, the real range
measurements z are compared to ray-traced ranges ẑ
using the particle pose and map. We compare the
simulated and real ranges using the measurement
model

z = g�st,ut,N�0,�z�� ,

which is assumed to have a normal noise model, so

p�z
s,�� =
1

�2��z
2
e−�ẑ − z�2/2�z

2
.

Substituting into the expression for particle weight
and taking the logarithm of both sides shows that
maximizing this weight metric is very close to mini-
mizing the intuitive sum squared error metric:

log w = C −
1

2�2 
i=1

#son

�iẑ − iz�2,

where C=#son� log ��2��2�. An alternative weight-
ing method, called “point correlation” was found to
be slightly less informative �Fairfield et al., 2005�.

Resample. The O�n� algorithm described in Aru-
lampalam et al. �2002� is used to resample the set of
particles according to the weights w such that par-
ticles with low weights are likely to be discarded and
particles with high weights are likely to be dupli-
cated. The set of particles is now our new estimate of
the new SLAM posterior.

Update. The measurements z are inserted into the
particle maps ��m� �as described in Section 4� to up-
date the evidence of all the voxels � that lie in the
conic sonar beam model of each measurement rela-
tive to the particle position. This is when maps must
be copied and updated. We save duplicate insertions
by inserting before copying successfully resampled
particles.

Estimate. Generate a position estimate from the
particles.

Repeat from Predict.

5.1. Modifications

5.1.1. Sensor-Based Prediction

The particle filter algorithm uses the current sensor
models during the prediction phase. For example,
the IMU provides excellent heading �±0.1° �, while
the DVL provides much worse heading �±2° �. If the
IMU is available, then the predict step takes the
heading value, adds Gaussian noise N�0,0.1° �, and
uses the new value to dead-reckon the particle’s new
position. If the IMU fails, then the filter will fall back
to the DVL data and generate more noisy predic-
tions. This is vital to the robustness of the SLAM
method. In the case where there are redundant sen-
sors, it would make sense to use a Kalman filter to
combine the information and perform the prediction
step using the covariance estimates as the prediction
noise model.

An important observation is that when all
DEPTHX sensors are functioning, the particle filter
only really estimates x and y as the particles are dis-
tributed in the xy plane. However, when sensors fail
or degrade, the particle filter distributes particles

Table III. Model notation.

N�� ,�� normal distribution with
mean � and std dev �

h�st−1 ,ut ,N�0,�u�� vehicle motion model with
noise model N�0,�u�

=p�st 
ut ,st−1�

g�st ,� ,N�0,�z�� sonar measurement model
=p�zt 
st ,��
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over the newly uncertain dimensions. This will dra-
matically increase the risk of undersampling, but
since the failure or degradation of a sensor will also
cause the vehicle to terminate the mission and return
to the surface, SLAM can switch to a localization-
only mode �without map updates� in which it can
support many more particles, which may ameliorate
the situation.

5.1.2. Adaptive Particle Count

The processing time of a single iteration of the
SLAM algorithm varies significantly depending on
local world geometry. This is because of the range-
dependent ray-tracing time, but the implication is
that the particle filter could be using more particles
and still maintain real-time performance. Further-
more, the weighting and resampling steps take ap-
proximately the same amount of time given a fixed
number of particles. How to best spend the available
computational resources: weighting more particles
in the hopes of finding good ones or resampling
more particles in order to maintain particle diver-
sity? Our approach is to weight as many particles as
possible, but then to fully resample according to
those weights. With DRCOs, resampling particles is
fast. We modify the particle filter algorithm as
follows:

1. Start with a huge number of particles �in our
case 5000: more than could ever be supported
computationally�.

2. During the weighting step, set all particle
weights to zero and then randomly pick par-
ticles and weight them until the time limit is
reached.

3. Fully resample the particle set—particles that
were not weighted will always be replaced
with weighted particles

Note that it is important to randomly pick particles
during the weighting phase to avoid sorting effects,
such that the distribution is accurately subsampled.

5.2. Discussion

The idea of the adaptive particle count is to use as
many particles as possible in real-time without dis-
carding any data, which is the dual of the Kullback-
Liebler distance �KLD� sampling technique men-
tioned above. The adaptive particle count method

appears to provide an improvement over an equiva-
lent �from a real-time performance perspective� fixed
particle count, particularly while in enclosed areas
�see Figure 19�. The most important contribution of
adaptive particle count is the reliable real-time per-
formance in the face of unknown world geometry.
However, it does not provide any guarantees about
avoiding undersampling. We believe that a better
system would incorporate both KLD sampling and
temporal constraints to determine the particle count.
In the case where KLD sampling cannot be satisfied
within the given time constraints the vehicle should
probably terminate the mission and resurface, but it
still must provide a SLAM solution.

The particle filter/octree combination is stable
with regard to the fraction of particles that are
resampled at each time step �which can vary be-
tween 0 and #par−1�. Although discarding a particle
is costly because of the potential for a recursive
freeNode, the node does not have to be updated—
which saves many ray insertions. What does seem to
be a good indicator of the duration of an iteration is
the average sonar beam length, which makes sense.

The performance of the DRCO depends heavily
on the circumstances. It will be most efficient when
the environment and particle filter are amenable to
the exploitation of spatial locality �particles share
most of the map in common when the vehicle is only
modifying small regions� and volumetric sparsity
�octrees compactly represent a map that is mostly
empty or full�. Most large-scale outdoor environ-
ments seem to be well suited for this type of
exploitation.

6. EXPERIMENTS

We present two experiments. The first is a basic dem-
onstration of SLAM in a cylindrical test tank using
data collected by the actual DEPTHX vehicle. The sec-
ond is a demonstration of SLAM in a synthetic �par-
tially simulated� environment that closely models the
challenging features we expect to encounter in
Zacatón.

6.1. ARL Tank Test

The large wooden test tank at the University of
Texas at Austin Applied Research Lab �ARL� is a cyl-
inder 38 feet �11.6 m� deep and 55 feet �16.8 m� in
diameter. To test SLAM in this environment, we had
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the DEPTHX vehicle drive three cycles around a 3D
box pattern �Figure 9�, using dead-reckoning for lo-
calization and navigation. The box pattern was 8 m
on a side and 5 m deep, and each cycle took about
13 min for a total run time of 40 min. The vehicle
rotated �5°/s during ascent and descent in order to
obtain better sonar coverage of the walls.

6.1.1. Test Tank Results

We are still in the testing phase for SLAM and did
not use it to guide the DEPTHX vehicle. However,
we did run SLAM in a diagnostic mode onboard
DEPTHX and demonstrated convergence of
localization-only SLAM with 500 particles and a
prior map, which consumed less than 20% of the
onboard CPU.

To establish the ground truth trajectory of the
vehicle, we ran SLAM with 3000 particles in
localization-only mode with a manually constructed
0.25 m resolution map of the ARL tank. The dead-
reckoned trajectory drifted from the ground-truth by
�0.5 m, which agreed with our observations during
the test. We then ran SLAM using 500 particles �with
no prior map�, which yielded a bounded localization
error of �0.1 m �Figures 10 and 11�. To demonstrate
SLAM in a more challenging scenario, we turned to
the synthetic Wakatón environment.

6.2. Wakatón

In May 2005, the DEPTHX team lowered a 32-sonar
probe, called the DropSonde, into Zacatón to a depth

Figure 9. This figure shows the 3D trajectory of the
DEPTHX vehicle in the ARL test tank, as well as a render-
ing of the vehicle and its sonar beams. The vehicle is sur-
rounded by the cloudy evidence map constructed by
SLAM, where opacity indicates occupancy.

Figure 10. Planar XY view of the trajectories of the vari-
ous localization solutions in the ARL test tank. The
deadReck solution looks quite square as it was used to
navigate during the test, but the true vehicle trajectory is
shown by locOnly �localization-only SLAM with 3000
particles�.

Figure 11. Distance between various localization solu-
tions in the ARL test tank. The ground truth was estab-
lished using localization-only SLAM with 3000 particles—
dead-reckoning drifts away while SLAM error is bounded.

Fairfield et al.: SLAM with Octree Evidence Grids in Underwater Tunnels • 15

Journal of Field Robotics DOI 10.1002/rob



of 200 m �Figure 2� �Fairfield et al., 2006�. A similar
probe, called the Digital Wall Mapper �DWM�, was
used in 1998–1999 to map several kilometers of the
Wakulla Springs cave system in Florida �Stone, am
Ende, Wefer & Jones, 2000�. The DWM was a diver-
driven sensor sled, and the DropSonde was simply
lowered on a cable from a barge. Both probes were
based around a ring laser gyro IMU, two depth sen-
sors, and a ring of 32 pencil-beam sonars arrayed
radially.

The problem with using either of the DWM or
DropSonde datasets to test our SLAM method was
that neither dataset contained sonar data with a rea-
sonable geometry for SLAM. In both cases, the data
were collected by driving a ring of sonars along the
axis of a cylindrical tunnel. In this orientation, the
sonars provided no “look-back” to previously
mapped regions, which is essential for SLAM.

Our solution was to create a synthetic world by
building partial maps from the datasets and merging
them together. In the case of the DropSonde data, we
recorded all six degrees of freedom: the xy position
of the barge and the depth, attitude, and heading of
the probe. Together with the sonar data, this Drop-
Sonde pose data provided an excellent map of the
first 200 m of Zacatón. The Wakulla Springs data
also contained excellent attitude, heading, and
depth, but there was no ground truth for x and y
position except for a few widely spaced waypoints.
Using these waypoints to estimate the IMU drift
rates, we generated a reasonable trajectory that was
consistent with the sonar data, and used this to con-
struct maps of two small tunnels, which we grafted
onto the base of the partial Zacatón map �Figure 12�.
By combining the two datasets, we created a high-
fidelity model of Zacatón including challenging hy-
pothesized features, such as small tunnels, loops,
and bell domes. From this combined model, which
we called “Wakatón,” we could simulate sonar
ranges for any desired sonar geometry with any
ground truth path, including loop closure. We gen-
erated virtual vehicle trajectories and then used sen-
sor noise models to simulate sensor readings for that
trajectory.

The sensor noise was generated from zero-mean
normal distributions. We elected to use conservative
�high� noise values for three reasons: we have little
information about the performance of the various
sensors on the integrated DEPTHX vehicle in
Zacatón, we wanted to encourage particle diversity,
and we wanted to cause a clear distinction between

dead-reckoning and SLAM on the same dataset. Ac-
cordingly, the DVL velocity noise was 0.2 m/s 1�,
the IMU yaw noise was 1° 1�, the depth sensor
depth noise was 0.01 m 1�, and the sonar range
noise was 1 m 1�. We compared the simulated sonar
ranges with real sonar data to verify that the synthe-
sized map generated realistic data. The two trajecto-
ries shown in Figure 12 were used in the next
section.

This method differs from pure simulation in sev-
eral important ways. The complex real-world geom-
etry of the tunnels is preserved, as are some of the
noise characteristics of the sonars. We were also able
to use the real attitude and depth data �from the
IMU and depth sensors, respectively�, although we
had to simulate the DVL data.

6.2.1. Wakatón Results

Figure 13 shows that as the number of particles in-
creases beyond 100 the localization error decreases,
although the error does not go to zero. Below 100
particles the filter diverges, and so it actually per-

Figure 12. This figure shows the two test dives superim-
posed on the synthetic Wakatón map, which was con-
structed by merging portions of the Zacatón and Wakulla
Springs datasets. Dive 1 went out to the furthest extremity
of the tunnel and back, while Dive 2 went around the
loop.
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forms worse than just dead-reckoning �which is the
same as 1 particle�. This is due to particle depletion,
when the filter is unable to adequately sample the
posterior distribution with so few particles.

Figure 14 shows that SLAM with 200 particles
has a relative accuracy of about 1 m. The first dive
has significant absolute error �as shown in Figure 13�,
the second dive �which used the map constructed
during the first dive� is close enough that we will be
able to consistently return to within about a meter of
the same location for sampling.

Since the Wakatón environment is closely mod-
eled on what we expect to find in Zacatón and we
used pessimistic sensor error models, we have a rea-
sonable expectation that SLAM will succeed in
Zacatón with a similar number of particles ��500�,
although we certainly expect to support more. We
will be able to make stronger predictions as we pro-
ceed with testing the DEPTHX vehicle.

6.2.1.1. Deferred Reference Count Octree

The deferred reference count method rolls the cost of
propagating reference counts into the insert opera-
tion, but the overall performance improvement is
substantial. Without deferred reference counts, 70%
of the SLAM processing time during a Wakatón dive
is consumed by maintaining reference counts �for

map copies� while only 30% is being used for ray-
tracing �for weighting and updating the maps�. De-
ferred reference counting reduces the map manage-
ment overhead by a factor of 10, to 7%. But this
under-represents the actual performance gain in the
context of the particle filter: a major cost for the par-
ticle filter comes from particles that are resampled
�copying the pose and map from a more highly
weighted particle� in one time step, and then are re-
sampled again in the next time step—without ever
inserting anything into their maps. DRCOs give us
this for free, simply incrementing and decrementing
the defCount of the root node.

Octree ray tracing is still three times slower than
uniform ray tracing in this implementation. How-
ever, due to the enormous gains in map efficiency,
octree maps allow the SLAM system to support hun-
dreds of particles with high-resolution maps, some-
thing that is not even possible with uniform maps
�for example, the 400 particles with 0.5 m resolution,
5123 m maps used in the experimental scenario�.

Figure 15 shows that the DRCO storage effi-
ciency of the particle filter increases with the number
of particles �due to increased amounts of overlap be-
tween particles�. Each particle takes about 1 Mb of
memory, and about 10 s of computation time.

Figure 13. SLAM localization error during Dive 1
through Wakatón with 1, 20, 50, 100, 200, and 400 particles.
One particle is equivalent to dead-reckoning. With 20 and
50 particles, the filter appears to diverge near the end of
the dive. The performance clearly improves as the number
of particles increases beyond 100 particles.

Figure 14. SLAM repeatability in Wakatón shows that
with 200 particles the vehicle relocalized to within about
1 m of its first estimated trajectory. This figure shows the
distance between the first estimated trajectory and the sec-
ond estimated trajectory, which used the map constructed
during the first dive.
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Memory usage and computation time increases cu-
bically with map resolution, as expected.

6.2.1.2. Adaptive Particle Count

Figure 16 shows that SLAM time is roughly split be-
tween the weighting and resampling steps and Fig-
ure 17 demonstrates that the amount of processor

time for a single SLAM iteration varies significantly
between when the vehicle is in the main Wakatón
cylinder and when it is in the much more constricted
tunnels. This encourages the idea that the particle
filter could do better if it could vary its particle
count �see Figure 18�: Figure 19 shows the number of

Figure 15. There is a slightly sublinear relationship be-
tween number of particles and octree map memory in
Wakatón �each particle taking about 1 Mb of memory�.
The red line shows what a linear relationship would be.

Figure 16. Cumulative processing time of the SLAM loop
with 200 particles is shared almost equally by two of the
steps: weighting and updating. It also shows that while
the vehicle is in the tunnels at the bottom of Wakatón, the
iteration duration is shorter, as we would expect since the
sonar ranges are shorter.

Figure 17. Processing time of the SLAM loop drops sig-
nificantly while the vehicle is in the tunnels at the bottom
of Wakatón, as we would expect since the sonar ranges are
shorter. This indicates that the particle filter could use
more particles while in the tunnels.

Figure 18. Localization error over time for different time
limits of the weighting function. As expected, the particle
filter performance improves as the amount of time it is
allowed to spend weighting particles increases.
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particles that were evaluated for different values of
the weighting time limit. Figure 20 shows the im-
proved timing consistency for adaptive particle
count version of the particle filter �although there is

still variation in the amount of time necessary for the
weighting step�.

6.2.1.3. Real-time Performance

Figure 19 shows that for the desired 2 Hz SLAM
timing, which is achieved with a weighting time of
0.1 s, the DEPTHX SLAM processor �a 1.8 GHz Pen-
tium M� is capable of supporting between 100 and
600 particles, with an average of around 300.

We expect that map quality will degrade as the
sonar ranges increase as a natural consequence of
the spreading of the sonar beams, and also the fact
that coverage will tend to be more sparse �per unit
area�. At the same time, localization quality may
well be better with long ranges because the vehicle
will be sensing over a large area, which should pro-
vide strong localization information. It seems that as
sonar ranges increase, precision degrades but overall
accuracy improves. The inverse is true in small tun-
nels. This phenomenon explains we see improved
performance with a varying number of particles
�Figure 21�: the filter maintains accuracy in enclosed
areas because of the increased number of particles
that it can support.

Figure 19. Number of particles evaluated �weighted�
over time for different time limits for the weighting func-
tion �on the DEPTHX SLAM processor�. As expected, the
particle filter is able to evaluate more particles as the
amount of time it is allowed to spend weighting particles
increases.

Figure 20. Cumulative processing time of the time lim-
ited variant of the particle filter. For this run, the weight-
ing step was limited to 0.18 s. Compare the improved con-
sistency versus a fixed number of particles �Figure 16�.

Figure 21. Comparison of localization performance of the
two variants of the particle filter. In blue, the particle count
was allowed to vary, but the weighting time limit was set
to 0.18 s. In red, the particle filter used a fixed particle
count of 200, which is the maximum static number of par-
ticles that could be safely specified to achieve the same
0.18 s real-time performance �Figure 19�.
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7. CONCLUSIONS

The core result is that our method accurately localizes
the vehicle in the ARL tank test dive and over the
course of several synthesized test dives in the
Wakatón environment. This demonstrates improve-
ment over pure dead-reckoned navigation in both
convergence in vehicle trajectory �returning to a pre-
viously mapped path� and map quality.

We have developed an efficient octree data struc-
ture for manipulating 3D evidence grids. This is the
key innovation that allows the efficient implementa-
tion of a Rao-Blackwellized particle filter for 3D
SLAM. Using the ARL tank test and synthetic
Wakatón environment, we have demonstrated that
the target computing platform can support hundreds
of particles—enough to provide an accurate SLAM
solution—in real-time. We also demonstrated a ro-
bust real-time particle filter implementation that ad-
justs the particle count in order to achieve accurate
timing in the face of varying environmental geom-
etry. This allows the algorithm to satisfy real-time
constraints while using as many particles as possible,
which has demonstrably improved performance over
the conservative static particle count.

The next phase of this research involves intensive
integration and testing of SLAM on the DEPTHX ve-
hicle. This will include definitive characterization of
the SLAM algorithm, in particular the performance
under various failure conditions. We plan to conduct
field experiments in Zacatón in 2007.
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