
http://ijr.sagepub.com
Robotics Research

The International Journal of

DOI: 10.1177/0278364907079280
 2007; 26; 845 The International Journal of Robotics Research

Roland Geraerts and Mark H. Overmars
 Creating High-quality Paths for Motion Planning

http://ijr.sagepub.com/cgi/content/abstract/26/8/845
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Multimedia Archives

 can be found at:The International Journal of Robotics Research Additional services and information for

 http://ijr.sagepub.com/cgi/alerts Email Alerts:

 http://ijr.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://ijr.sagepub.com/cgi/content/refs/26/8/845
SAGE Journals Online and HighWire Press platforms):

 (this article cites 7 articles hosted on the Citations

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://www.ijrr.org/multimedia.html
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/cgi/content/refs/26/8/845
http://ijr.sagepub.com

Roland Geraerts
Mark H. Overmars
Institute of Information and Computing Sciences,
Utrecht University 3508 TB Utrecht, the Netherlands,
{roland,markov}@cs.uu.nl

Creating High-quality
Paths for Motion
Planning

Abstract

Many algorithms have been proposed that create a path for a robot in
an environment with obstacles. Most methods are aimed at finding a
solution. However, for many applications, the path must be of a good
quality as well. That is, a path should be short and should keep some
amount of minimum clearance to the obstacles. Traveling along such
a path reduces the chances of collisions due to the difficulty of mea-
suring and controlling the precise position of the robot. This paper
reports a new technique, called Partial shortcut, which decreases the
path length. While current methods have difficulties in removing all
redundant motions, the technique efficiently removes these motions
by interpolating one degree of freedom at a time. Two algorithms are
also studied that increase the clearance along paths. The first one
is fast but can only deal with rigid, translating bodies. The second
algorithm is slower but can handle a broader range of robots, includ-
ing three-dimensional free-flying and articulated robots, which may
reside in arbitrary high-dimensional configuration spaces. A big ad-
vantage of these algorithms is that clearance along paths can now
be increased efficiently without using complex data structures and
algorithms. Finally, we combine the two criteria and show that high-
quality paths can be obtained for a broad range of robots.

KEY WORDS—motion planning, path quality, path length,
path clearance

1. Introduction

Motion planning is one of the fundamental problems in
robotics. The motion planning problem can be defined as
finding a path between a start and goal placement of a ro-
bot in an environment with obstacles. During the last 15
years, efficient techniques, such as the Probabilistic Roadmap

The International Journal of Robotics Research
Vol. 26, No. 8, August 2007, pp. 845–863
DOI: 10.1177/0278364907079280
c�2007 SAGE Publications
Figures 1–11 appear in color online: http://ijr.sagepub.com

Method (Kavraki et al. 1996) and the Rapidly-exploring Ran-
dom Tree (Kuffner and LaValle 2000), have been devised to
tackle this problem. However, many techniques generate low
quality paths. These paths often contain many unnecessary and
jerky motions. Many applications require a short path since re-
dundant motions will take longer to execute. In addition, the
path has to keep some amount of minimum clearance from ob-
stacles to reduce the chance of collisions with these obstacles.
In this paper, we study several techniques for reducing the path
length and for increasing the path clearance.

1.1. Path Length

The first problem we study is removing redundant motions
from a path. A simple technique that decreases the path length
is called Path pruning. This technique assumes that a path is
represented by a list of nodes �0� � � � � �n�1 � V which may
originate from a graph. For collision checking purposes, the
path must be converted to a discrete path� using a local plan-
ner (see Definition 3). The path pruning technique removes a
node �i�1 from a path� if the local path LP[�i � �i�2] between
nodes �i and �i�2 is collision-free.

The most widely applied method is the Shortcut heuris-
tic because of its effectiveness and simple implementation.
The Shortcut heuristic takes two random configurations on
the path. If the part between these two configurations can be
replaced by a new shorter path, produced by a local plan-
ner, then the original part is replaced by the new path. This
technique outperforms the Path pruning heuristic as not only
nodes are considered on the path, but also all intermediary
configurations. The configurations can be chosen randomly
(Chen and Hwang 1998� Geem et al. 1999� Kavraki and
Latombe 1998� Sánchez and Latombe 2002� Sekhavat et al.
1998� Švestka 1997) or deterministically (Baginski 1997� Hsu
et al. 1999� Isto 2002). Also several variants of this heuristic
have been used (Baginski 1997� Berchtold and Glavina 1994�
Hsu et al. 1999� Isto 2002� Kavraki and Latombe 1998).

We will show in Section 3 that the Path pruning and Short-
cut heuristics will not remove all redundant motions. This is
because interpolations are performed between all degrees of

845

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

846 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2007

freedom (DOFs) simultaneously. We propose the Partial short-
cut heuristic, which takes only one DOF into account at each
optimization step. Experiments will show that this efficient
method creates shorter paths than the other two methods.

1.2. Path Clearance

The second problem we study is increasing the clearance along
a path. Algorithms that produce paths with high clearance
can be divided into two categories. The first category cre-
ates a roadmap (or graph) which represents the high-clearance
collision-free motions that can be made by the moving object
in an environment with obstacles. From this graph a path can
be extracted using Dijkstra’s shortest path algorithm. Since
the calculations to create the high-clearance paths are per-
formed off-line, we refer to this technique as a preprocessing
approach. The second category optimizes a given path. The
optimization is usually performed on-line in a post-processing
stage.

The Generalized Voronoi Diagram (GVD) is a roadmap
which can be used to extract high-clearance paths. The GVD

(or medial axis) for a robot with n degrees of freedom is
defined as the collection of k-dimensional geometric features
(0 � k � n) which are �n � 1 � k�-equidistant to the obsta-
cles. As an example, consider Figure 1 which shows a bound-
ing box and a part of the medial axis for a translating robot.
The medial axis of this robot consists of a collection of sur-
faces, curves and points. The surfaces are defined by the lo-
cus of 2-equidistant closest points to the bounding box. The
curves have 3-equidistant closest points and the points have 4-
equidistant closest points to the bounding box. These features
are connected if the free space in which the robot operates is
also connected (Choset and Burdick 2000). Hence, the GVD is
a complete representation for motion planning purposes. Most
importantly, paths on the GVD have appealing properties such
as large clearance from obstacles.

Wein et al. (2005) introduce a hybrid between the visibility
graph and the Voronoi diagram of polygons in the plane. A
shortest path with a preferred minimum amount of clearance
can be extracted in real time.

Unfortunately, an exact computation of the GVD is not prac-
tical for problems involving many degrees of freedom (DOFs)
and many obstacles as this requires an expensive and intricate
computation of the configuration space obstacles. Therefore,
the GVD is approximated in practice.

Vleugels and Overmars (1998) approximate the GVD by
applying spatial subdivision and isosurface extraction tech-
niques. Although the calculations are easy and robust, and
they can be generalized to higher dimensions, the technique
only works for disjoint convex sites and consumes an expo-
nential amount of memory, making this technique impractical
for problems involving many DOFs. Another approach, pro-
posed by Masehianand et al. (2003), incrementally constructs

Fig. 1. Part of the medial axis of an environment that consists
only of a bounding box.

the GVD by finding the maximal inscribed disks in a two di-
mensional discretized workspace. Although this algorithm is
also extensible to handle higher-dimensional problems, it suf-
fers from the same drawback as the preceding algorithm. Hoff
et al. (2000) describe a technique that exploits the fast com-
putation of a GVD using graphics hardware for motion plan-
ning in complex static and dynamic environments. However,
the technique is limited to a three-dimensional workspace for
rigid translating robots.

Kim et al. (2003) use an augmented version of Dijkstra’s
algorithm to extract a path from a graph (which does not have
to be a GVD) based on other criteria than length. The mini-
mum clearance along the path is maximized by incorporating
a higher cost for edges that represent a small amount of clear-
ance. Such a path rarely provides an optimal solution because
it is restricted to the randomly generated nodes in the roadmap.
Even if the nodes are placed on the medial axis (Lien et al.
2003), the edges will in general not lie on the medial axis, and
hence, the extracted path does not have an optimal amount of
clearance.

The above preprocessing methods create a data struc-
ture from which paths can be extracted. Brock and Khatib
(2002) present a (post-processing) framework that provides an
efficient method for performing local adjustments to a path in
dynamic environments. This path is represented as an elastic
band. Subjected to artificial forces, the elastic band deforms
in real time to a short and smooth path that maintains clear-
ance from the obstacles. The method can be applied to a broad
range of robots, but many parameters have to be set to get the
framework running. It is also not clear whether the resulting
path will and can have an optimal amount of clearance.

In this paper, we will study techniques to improve the clear-
ance along a given path. First, we will provide some prelimi-
naries in Section 2. After dealing with creating short paths in
Section 3, we describe in Section 4 our first algorithm that
adds clearance to a path by retracting it to the medial axis of
the workspace. The algorithm is limited to translating, rigid
bodies. Although it provides optimal clearance paths for rigid,
translating bodies in the plane, the paths may not be optimal
for robots operating in a three-dimensional environment. We
remove these limitations by presenting an algorithm that pro-

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Geraerts and Overmars / Creating High-quality Paths for Motion Planning 847

vides high-clearance paths for a broad range of robots residing
in arbitrary high-dimensional configuration spaces. We apply
these algorithms to six different environments and conclude
that clearance along paths can be increased without using com-
plex data structures and algorithms.

Finally, we show that short paths having some minimal
amount of clearance can be easily created by combining the
techniques. The results can be used, for example, to obtain
high-quality paths in high-cost environments such as a factory
in which a manipulator arm operates.

2. Preliminaries

As this paper deals with improving the robot’s clearance along
a path, we need a way to compute the clearance of the robot
to the obstacles. This calculation is delegated to our collision
checker Solid (van den Bergen 2003). We define the clearance
of a configuration as follows:

Definition 1 [Clearance of a configuration �] Let R be the
set of all points on the robot whose placement in the environ-
ment corresponds to configuration � . Furthermore, let O be
the set of all points on all obstacles in the environment. Then
the clearance of configuration � is the shortest Euclidean dis-
tance between r and o: r � R � o � O.

To define a path, we need the following definition of adja-
cent configurations.

Definition 2 [Adjacent configurations] The configurations
�0� � � � � �n�1 are adjacent if the distance d�� i � � i�1� is at
most a predetermined distance step.

The step size is chosen dependent on the robot and obsta-
cles. We will describe below how to compute distances. We
can now define a discrete path, discrete local path, and a node
path.

Definition 3 [Discrete path �] A discrete path � is a series
of n adjacent configurations �0� � � � � �n�1.

Definition 4 [Discrete local path LP] A discrete local path
LP
�
� �� � ��

�
is a series of n interpolated adjacent configurations

�0� � � � � �n�1 on the local path between � � and � ��.

Definition 5 [Node path N] A node path N is a series of n
nodes �0� � � � � �n�1 such that the local paths LP[�i � �i�1] are
collision-free.

The average clearance of a path gives an indication of the
amount of free space in which the path can be moved without
colliding with the obstacles:

Definition 6 [Average clearance of discrete path �] Let �
be a discrete path. Then the average clearance is given by
1
n

�n�1
i	0 Clearance�� i �.

3. Path Length

We study three techniques to decrease path length. In Sec-
tion 3.1, we study the Path pruning technique which consid-
ers all nodes of the path. Then, we study the Shortcut tech-
nique in Section 3.2 which considers all configurations on the
path. While this technique performs interpolations between all
DOFs simultaneously, the Partial shortcut technique, described
in Section 3.3, takes only one DOF into account in each opti-
mization step. Finally, we conduct experiments in Section 3.4.

3.1. Path Pruning

In this section, we assume that a path is represented by a list
of nodes, see Definition 5. As these nodes are often generated
randomly, the path will be jerky. A very simple technique that
decreases the path length considerably is to remove all redun-
dant nodes. A node �i�1 on node path N is redundant if the
configurations on the local path LP[�i � �i�2] are collision-free,
i.e. LP[�i � �i�2] is in the free space �free. Besides being simple,
the technique is efficient and deterministic. See Algorithm 1
for more details.

Algorithm 1 REMOVEREDUNDANTNODES(node path N)
1: i
 0
2: while i � �N � � 2 do
3: if LP[�i � �i�2] � �free then
4: N
 N��i�1

5: if i � 0 then i
 i � 1
6: else
7: i
 i � 1
8: return N

3.2. Shortcuts

While the previous method only considers the nodes of a path,
the shortcut method considers all configurations on a discrete
path � (see Definition 3). Therefore, this method is expected
to create shorter paths at the cost of increased computation
time. The method tries to iteratively improve the path (see Al-
gorithm 2). In each iteration, path � is randomly split in three
parts. Let �a and �b denote the begin and end configurations
of the middle part. If the local path LP��a� �b� is collision-
free, then this local path replaces the middle part. As we use a
straight-line local planner, all DOFs are interpolated simultane-
ously. When another local planner is used, e.g. a local planner
for non-holonomic robots, care has to be taken that path ��
and��� keep satisfying the constraints of the local planner.

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

848 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2007

Algorithm 2 SHORTCUT(discrete path�)
1: loop
2: number of con�gurations n
 ���
3: a� b
 two random indices 0 � a � 1 � b � n
4: ��
 �0� � � � � �a�1

5: ���
 �a� � � � � �b

6: ����
 �b�1� � � � � �n�1

7: if LP��a� �b� � �free then
8: �
 �� LP��a� �b� ����

Fig. 2. Translation is required to navigate around the obstacle
and rotation can only be optimized by considering large por-
tions of the path.

3.3. Partial Shortcuts

Redundant motions (like unnecessary rotations) will not be re-
moved by the previous two heuristics as they can only be re-
moved by considering large portions of the path. But if we
consider such a large portion, some other degrees of freedom
(DOFs) are necessary to navigate around obstacles. Hence, ap-
plying the local planner to such a long portion is not going to
succeed (see Figure 2).

The standard optimization technique (Shortcut) replaces
pieces of the path by a straight-line segment in the
configuration space. In this way, all DOFs are interpolated
simultaneously. Some of them might be necessary to move
around the obstacles while others are not. The translational
DOFs in particular are often necessary to guide the object
around an obstacle while the rotational DOFs might be less
relevant. Consequently, applying the local planner on such a
part of the path will fail. Applying the local planner to opti-
mize shorter pieces of the path will not remove the redundant
rotations either because the two positions on the path will of-
ten have rather different orientations. Therefore, the rotation
is required locally, while more globally, it might be redundant
(see Figure 2).

We created a new technique, called Partial Shortcut, which
takes only one DOF f into account in each optimization step.
Algorithm 3 outlines the technique. In line 2, the chance that
a particular DOF is chosen is dependent on its weight, i.e.
P�DOF i� 	 	 i

�n�1
i	0 	 i . In this expression, we consider ro-

tation in 3D as one DOF. Then, we split path� in the same way
as we did in the Shortcut algorithm. (We assume that there are
no constraints which the configurations on the path have to
satisfy.) Now let � ��i [f] indicate the value for the f th DOF of
configuration � ��i of path���. We replace in each configuration
� ��i the value of the f th DOF by the value interpolated between
� ��0[f] and � ��m�1[f], where m is the number of configurations
on path ���. After creating partial shortcuts, it can occur that
the distance between two adjacent configurations on path ���
is larger than the step size. In such a case, we validate��� by in-
serting extra configurations such that �i : d�� i � � i�1� � step.
If path��� is collision-free, then��� replaces the original mid-
dle part. In this path all DOFs behave in the same way as in the
original path except for DOF f .

We expect that this method will be slower than the Shortcut
heuristic as only one DOF is taken into account in each itera-
tion. However, we expect that more redundant motions can be
removed.

Algorithm 3 PARTIALSHORTCUT(discrete path�)
1: loop
2: f
 a random degree of freedom
3: number of con�gurations n
 ���
4: a� b
 two random indices: 0 � a � 1 � b � n
5: ��
 �0� � � � � �a�1

6: ���
 �a� � � � � �b

7: ����
 �b�1� � � � � �n�1

8: m
 �����
9: for all � ��i � ��� do

10: � ��i [f]
 INTERPOLATE�� ��0[f]� � ��m�1[f]� i
�m �
1��

11: VALIDATEPATH�����
12: if��� � �free then
13: �
 �� ��� ����

3.4. Experiments

In this section, we apply the three techniques to six different
paths which have been created by the Probabilistic Roadmap
Method (Kravaki and Latombe 1998� Kravaki et al. 1996)
(which took up to 1.2 seconds). These paths have been selected
such that an optimization step cannot easily change the homo-
topic class of a path. Our goal is to investigate the extent to
which these techniques can improve the paths.

3.4.1. Experimental Setup

All techniques were integrated in our motion planning system
called SAMPLE (System for Advanced Motion PLanning Ex-
periments), implemented in Visual C++ under Windows XP.

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Geraerts and Overmars / Creating High-quality Paths for Motion Planning 849

Fig. 3. The six test environments and their corresponding initial paths.

SAMPLE automates conducting experiments, i.e. statistics are
automatically generated and processed, decreasing the chance
of errors. All experiments were run on a 3 GHz Pentium 4
processor with 1 GB internal memory. We used Solid as basic
collision checking package (van den Bergen 2003). The statis-
tics were all averaged over 100 independent runs.

To test the quality of the three techniques, we considered
the environments depicted in Figure 3. Their properties are
stated in Table 1. The step sizes are based on the environments
and robots. When these values are very high, it can occur that
collisions are not being detected. However, if they are very
small, the running times of the algorithms will increase. We
conducted preliminary experiments to find reasonable values.

Table 1. The axis-aligned bounding boxes of the environ-
ments and robots, and the step sizes for the robots.

Dimensions of the bounding box step
size

environment robot

Planar 100� 100 1� 1 1.0

Simple
corridor

40� 11� 30 0�2� 0�2� 0�75 0.4

Corridor 40� 17� 40 5� 1� 5 0.7

Wrench 160� 160� 160 68� 24� 8 3.0

Hole 40� 40� 40 5� 5� 10 1.0

Manipulator 10� 10� 10 variable 0.1

Planar This simple two-dimensional environment contains a
path traversed by a square robot that can only translate
in the plane. We use this environment to check whether
the techniques can reach the optimal solution.

Simple corridor This simple three-dimensional environment
with ample free space to maneuver features a jerky path
traversed by a small free-flying cylinder. Many motions
are redundant. We expect that they can be removed eas-
ily by all techniques.

Corridor The environment consists of a winding corridor that
forces a free-flying elbow-shaped robot to rotate. Re-
dundant rotations can only be removed by considering
large portions of the path. Hence, we expect that the Par-
tial shortcut technique will out perform the other tech-
niques.

Wrench This environment features a fairly large free-flying
object (wrench) in a workspace that consists of 13 cross-
ing beams. The wrench is rather constrained at the start
and goal positions. In contrast to the previous three en-
vironments, rotational DOFs are now more important
than translational ones. Again, we expect that the Par-
tial shortcut technique outperforms the other techniques
as this technique handles each DOF independently.

Hole The free-flying robot, which has six DOFs, consists
of four legs and must rotate in a complicated way to
get through the hole. The path contains many redun-
dant (rotational) motions. Only where the robot passes

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

850 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2007

through the hole, the clearance is small, which may
cause difficulties in removing the redundant rotational
part of the motions for the Path pruning and Shortcut
methods.

Manipulator The articulated robot has six rotational DOFs
and operates in a constrained environment. In this en-
vironment, there is a major difference in importance of
the six rotational DOFs. That is, the link that is closest to
the base is more important than the gripper of the manip-
ulator. As only the Partial shortcut technique recognizes
this difference, we again expect this technique to outper-
form the others.

We need a distance measure to discuss path length. The im-
portance of choosing a good distance metric is discussed in
Amato et al. (1998). Such a metric often incorporates weights
(i) which are chosen such that a small displacement of a
configuration in �-space leads to a small displacement of the
corresponding placement of the robot in the workspace. We
distinguish three types of DOFs: translation, rotation(1) (ro-
tation about the x-, y-, or z-axis) and rotation(3) (rotation in
S3). For example, a free-flying robot can be described by three
translational DOFs and one rotational(3) DOF, and an articu-
lated robot with six joints can be described by six rotational(1)
DOFs. Clearly, the rotational DOFs need to have larger weights
than the translational ones. The weights used for the different
environments are listed in Table 2. These weights are also used
in the Partial shortcut technique.

As we want to distinguish between rotational and transla-
tional DOFs, we compute the length of a discrete path � as
follows:

d��� 	 dr ���� dt���� where

dr ��� 	
n�2�
i	0

dr �� i � � i�1� and

dt��� 	
n�2�
i	0

dt�� i � � i�1��

Let q 	 � i and r 	 � i�1. Then, for all k rotational DOFs
0 � j � k and for all �l � k� translational DOFs k � j � l:

dr �q� r� 	
����k�1�

j	0

[j d�q j � r j �]2 and

dt�q� r� 	
���� l�1�

j	k

[j d�q j � r j �]2�

Table 2. The weights for each DOF of the robots.

Type of DOF of the robot

translational rotational(1) rotational(3)

Planar 1, 1

Simple
corridor

1, 1, 1 3

Corridor 1, 1, 1 7

Wrench 6, 6, 6 30

Hole 1, 1, 1 11

Manipulator 6, 6, 6, 2, 2, 2

The calculation of distance d�q j � r j � is dependent on the type
of the DOF:

� For translation, we set d�q j � r j � to �q j � r j �.

� We split the calculation for a rotational(1) DOF in two
parts: if the range is smaller than 2� , which often oc-
curs for revolute joints in manipulator arms, we take
the same distance measure as for a translational DOF.
If the rotational DOF is periodic, i.e. the orientation at
0 radians equals the orientation at 2� radians, we take
the smallest angle. More formally, we set d�q j � r j � to
�q j � r j � if r is not periodic, otherwise d�q j � r j � 	
min��q j � r j �� q j � r j � 2�� r j � q j � 2��.

� We use unit quaternions to represent rotations in 3D.
The distance between two quaternions q j �x� y� z� 	�
and r j �x� y� z� 	� can be calculated by taking the
shortest angle over a 4D-sphere, i.e. d�q j � r j � 	
min�2 arccos�q j � r j �� 2� � 2 arccos�q j � r j ��. The dot
product q j � r j is defined as q j � r j 	 q j �x �r j �x�q j �y �
r j �y � q j �z � r j �z � q j �	 � r j �	 .

We express path length as a percentage relatively to the ‘op-
timal’ path length to facilitate the comparison between differ-
ent optimization techniques. Let d be the path length and dopt

be the optimal path length. Then we calculate the percentage
�d as 100%� d�dopt

dopt
. The closer this number approaches zero,

the closer to optimal the path is. The optimal path lengths were
defined as the paths of minimum length over all experiments
conducted and are stated in Table 3 and depicted in Figure 4.
Even though we cannot guarantee that these are indeed op-
timal, visual inspection strongly suggests that they are very
close to optimal. Table 4 shows the initial relative lengths.
The paths are far from being optimal. For example, the path
in the Simple corridor environment is 408% longer than the
shortest path encountered in all experiments with this environ-
ment.

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Geraerts and Overmars / Creating High-quality Paths for Motion Planning 851

Fig. 4. The six test environments and their corresponding optimal paths.

Table 3. The shortest absolute lengths of the paths.

Shortest path length

dropt dtopt dopt

Planar – 300.12 300.12

Simple corridor 0.12 100.84 100.96

Corridor 19.31 162.59 181.90

Wrench 827.63 138.99 966.62

Hole 6.87 36.76 43.63

Manipulator 10.73 – 10.73

Table 4. Relative length statistics of the initial paths. The
numbers are expressed as percentages relatively to the op-
timal path lengths.

Relative path length

�dr �dt �d

Planar – 40 40

Simple corridor 213,917 154 408

Corridor 1,296 132 256

Wrench 113 112 113

Hole 628 61 150

Manipulator 55 – 55

We investigate the extent to which the three heuristics can
improve the six paths from Figure 3. We run the Path prun-

ing heuristic once for each experiment as this technique is
deterministic. We use these paths as input for the Shortcut
and Partial shortcuts heuristics. As these techniques are non-
deterministic, we run them 100 times for each experiment and
report the average results. To ensure the exploitation of the full
potential of the heuristics, we run each non-deterministic ex-
periment for 120 seconds as preliminary experiments showed
that all paths converge within this time.

In the second batch of experiments we determine how long
the Shortcut and Partial shortcut heuristics should be applied
to obtain reasonably short paths. This is useful for practical
purposes.

3.4.2. Experimental Results

The results of the experiments are stated in Table 5. This ta-
ble shows the relative path length (rotational, translational and
total length) for the initial paths and the three heuristics.

The table shows that the Path pruning heuristic improved
the paths considerably in all cases. Note that the rotational dis-
tance (�dr) is still far from optimal, although the translational
distance (�dt) has been decreased considerably. The running
times of this deterministic heuristic were between 5 and 54 ms.
The Shortcut heuristic was able to decrease the path length
even more, i.e. the paths obtained a length that was 3–28%
larger than the optimal paths. However, the paths still con-
tained many redundant rotational motions. The Partial short-
cut heuristic was much better able to remove the redundant
(rotational) motions than the previous heuristics since only one

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

852 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2007

Table 5. Relative length statistics of the resulting paths. The numbers are expressed as percentages relatively to the optimal
path lengths. The closer a number approaches zero, the closer to optimal it is.

Planar Relative path length

�dr �dt �d

Initial – 40 40

Path pruning – 15 15

Shortcut – 3 3

Partial shortcut – 1 1

Simple corridor Relative path length

�dr �dt �d

Initial 213,917 154 408

Path pruning 15,817 10 28

Shortcut 11,633 3 17

Partial shortcut 383 1 1

Planar Relative path length

�dr �dt �d

Initial 1,296 132 256

Path pruning 326 34 65

Shortcut 133 8 21

Partial shortcut 35 4 7

Wrench Relative path length

�dr �dt �d

Initial 113 112 113

Path pruning 71 71 71

Shortcut 28 28 28

Partial shortcut 3 3 3

Hole Relative path length

�dr �dt �d

Initial 628 61 150

Path pruning 462 17 87

Shortcut 155 0 25

Partial shortcut 27 0 5

Manipulator Relative path length

�dr �dt �d

Initial 55 – 55

Path pruning 45 – 45

Shortcut 8 – 8

Partial shortcut 3 – 3

DOF was interpolated at a time. In addition (preliminary exper-
iments showed that) using different weights sped up the con-
vergence. Finally, the translational lengths of the paths became
close to optimal.

We will now examine the results more closely for each en-
vironment.

Planar Both the Shortcut and Partial shortcut techniques
reached the optimal solution. The latter one produced
paths that were on average only 1% larger than the opti-
mal path.

Simple corridor The initial path contained many redundant
(rotational) motions which could not be removed com-
pletely by the Path pruning and Shortcut heuristics.
However, the Partial shortcut technique was able to pro-
duce paths that are very close to the optimal path as only
one DOF is optimized during an iteration of the algo-
rithm. Note that the relative rotational path length seems
to be very large while the total relative path length was
only 1. This is because the optimal (absolute) rotational
distance was very close to zero (0.12).

Corridor Also in this environment, the Partial shortcut
heuristic outperformed the other techniques. A large

number of the redundant rotational motions were re-
moved as large portions of the path could be replaced
by less redundant motions.

Wrench The optimal path corresponds to a smooth motion
traversed by the wrench. Again, the Partial shortcut
heuristic was able to produce such a path as the resulting
paths were only 3% worse than the optimal path.

Hole All techniques removed the redundant translational mo-
tions, i.e. the translational relative path lengths for the
Shortcut and Partial shortcut heuristics were only 0.49%
and 0.33%. However, it was difficult to remove the ro-
tational motions as the moving object was rather con-
strained near the hole. However, the Partial shortcut
heuristic obtained a path that was on average 5% longer
than the optimal path.

Manipulator The Shortcut and Partial shortcut methods cre-
ated short paths which are comparable to the optimal
path depicted in Figure 4. However, the latter one out-
performed the Shortcut method and produced paths that
were on average only 3% larger than the optimal path.

In our experiments, we ran the heuristics for 120 seconds
as we wanted to see their full potential. In all cases, the Partial

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Geraerts and Overmars / Creating High-quality Paths for Motion Planning 853

Fig. 5. Convergence of the Shortcut and Partial shortcut heuristics in the six environments.

shortcut heuristic outperformed the Shortcut heuristic. Hence,
when optimal path quality is desired (in terms of path length),
the Partial shortcut algorithm should be used.

However, the running times may be too high for on-line use.
An important question is how well the heuristics perform when
there is less computation time available. Figure 5 shows for
each environment the relationship between the running time
and the relative path length of both the Shortcut and Partial
shortcut heuristics. Each marker in the graphs represents the
averaged relative path length over 100 independent runs. In all
but one environment (Manipulator), the Partial shortcut heuris-
tic always outperforms the Shortcut heuristic. Therefore, the
Partial shortcut heuristic should be preferred. Furthermore, it
can be observed that the relative path length decreases rapidly
as the available computation time increases. When the path
is relatively simple (such as in the Planar, Simple corridor,
Wrench and Hole environment), only one second of compu-
tation time is required to obtain a path that is about 5% longer
than the optimal path. For more complex paths (such as in the
Corridor and Manipulator environment), the paths obtained af-
ter one second are about 25% longer than the optimal path.

We conclude that reasonably short paths can be obtained for
all tested environments when the (Partial shortcut) algorithm is
run for one second.

4. Path Clearance

We study two techniques to increase the clearance along
a path. In Section 4.1, we propose the �-RETRACTION

technique. This technique is fast, but can only deal with
rigid, translating bodies. In Section 4.2, we propose the �-
RETRACTION technique. This technique is slower but can han-
dle a broader range of robots. Finally, we conduct experiments
in Section 4.3 and show in Section 4.4 that high-quality paths
can be obtained which have some minimum amount of clear-
ance while being short.

4.1. Rigid, Translating Bodies

In this section, we describe an algorithm that adds clearance to
a path traversed by a translating, rigid body. The problem we

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

854 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2007

want to solve is as follows. Convert a given discrete path �
into a path�� such that each robot placement that corresponds
to � �i � �� has (at least) two-equidistant nearest points to the
obstacles in the environment. We initially assume that the start
and goal configurations lie on the medial axis.

We will increase the clearance along a path by retracting its
individual placements of the robot (which we refer to as sam-
ples) to the medial axis of the free workspace. Our approach
is based on a technique from Wilmarth et al. (1999) which re-
tracts samples to the medial axis.1 Such a retracted sample will
have (at least) two-equidistant nearest points to the obstacles
in the workspace, resulting in a large clearance. As the retrac-
tion is performed in the workspace, only the clearance along
paths traversed by translating, rigid bodies can be improved.

4.1.1. Retraction Algorithm

We first show how to retract a single sample, corresponding
to configuration � � �, to the medial axis. Algorithm 4 out-
lines our approach. Let cp� be the point on the robot in the
workspace that corresponds to configuration � that is closest
to the point cpo on an obstacle in the workspace. We first cal-
culate the pair �cp� � cpo� of closest points between the robot
and obstacles. (This calculation is delegated to our collision
checker.) Then, we iteratively move in direction �����cpocp� until
the closest point on the obstacles changes. In each iteration,
the largest distance it can move such that the robot will not
collide with the obstacles equals its clearance which is defined
as the Euclidean distance between cp� and cpo. Finally, we
use binary search between the original closest point cpo and
changed closest point cpo� (with precision step) to find the
configuration �mid that has two-equidistant nearest points to
the obstacles in the workspace.

Algorithm 4 RETRACTCONFIGURATION(con�guration �)
Require: free con�guration � , obstacles O, precision step

1: �cp� � cpo�
 CLOSESTPAIR�� � O�
2: cpo�
 cpo

3: while cpo� 	 cpo do
4: � �
 �
5: �
 � � cp� � cpo

6: �cp� � cpo��
 CLOSESTPAIR�� � O�
7: while d�� � � �� � step do
8: �mid
 INTERPOLATE�� � � �� 0�5�
9: �cp� � cpo�
 CLOSESTPAIR��mid� O�

10: if cpo� 	 cpo then �
 �mid else � �
 �mid

11: return �mid

1. While their technique retracts single samples to the medial axis, our tech-
nique retracts a complete path.

Algorithm 5�-RETRACTION(discrete path�)
1: retracted path��
 �
2: for all � i � �, 0 � i � n do
3: � �
 RETRACTCONFIGURATION(� i)
4: � r
 the last con�guration of path ��
5: if d�� r � �

�� � step then
6: ��
 �� �-RETRACTION�LP

�
�r � �

���
7: ��
 �� � �
8: return��

Algorithm 5 shows how to retract a discrete path � to the
medial axis. We retract each configuration � � � to the medial
axis. If the distance between two consecutive configurations
of the retracted path �� exceeds step, we generate extra
configurations by applying the algorithm onto the local path
that is defined by these two configurations until the distance
between any two consecutive configurations is less than step.

Algorithm 5 will only work correctly when the start
configuration �0 and/or goal configuration �n�1 lie on the me-
dial axis. If not, the retracted path is concatenated with the lo-
cal path LP[�0� �

�
0] and/or local path LP[� �n�1� �n�1].

The path will now follow the medial axis. As an example,
we applied the algorithm on a square translating in a 2D en-
vironment. We took this environment from Lavalle’s Motion
Strategy Library (LaValle 2006). The first picture in Figure 6
shows the original path. The retracted path is visualized in the
second picture. As we can see, the moving object sometimes
traverses the same position twice. This detour is caused by the
injective mapping of configurations and can be detected by
looking for reversals in a sub-branch of the path. Algorithm 6
removes those redundant branches in linear time in ���. For
each triple �� i�1� � i � � i�1�, we remove � i if the distance be-
tween � i�1 and � i�1 is smaller than step. Figure 6(c) shows
the resulting path following the medial axis without traversing
a sub-branch twice. This path was computed within one sec-
ond.

Algorithm 6 REMOVEBRANCHES(discrete path�)
1: i
 1
2: while i � ��� � 1 do
3: if d�� i�1� � i�1� � step then
4: �
 ��� i

5: if i � 1 then i
 i � 1
6: else i
 i � 1
7: return�

4.2. Robots with Many Degrees of Freedom

The retraction method from the previous section provides an
accurate retraction of paths for rigid, translating bodies to the

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Geraerts and Overmars / Creating High-quality Paths for Motion Planning 855

Fig. 6. Retraction of a path traversed by a square robot in a 2D workspace. Picture (a) shows the query path. In (b), this path has
been retracted to the medial axis of the workspace. In (c), its branches have been removed.

Fig. 7. Retraction of a path in a 3D environment that consists of only a bounding box. A part of the medial axis inside this box is
shown. Figure (a) shows the initial path. This path is retracted to the medial axis by Algorithm 5. Figure (c) shows a path having
a larger amount of average clearance. This path was obtained by Algorithm 7.

medial axis. As the retraction is performed by a series of trans-
lations of the robot, the method is not suitable for increasing
the clearance along a path traversed by an articulated robot or
a free-flying robot for which the rotational DOFs are important
for a solution of the problem. In addition, the method will in
general not produce a maximal clearance path because the re-
traction is completed when the samples are placed somewhere
on the medial axis. Many samples could have had a larger
clearance if they were further retracted toward configurations
representing a higher clearance. See Figure 7 for an example.
The crooked path from Figure 7(a) was retracted to the medial
axis by the algorithm from the previous section. Figure 7(b)
shows that the retracted samples sway on the medial axis sur-
faces. In Figure 7(c), the path has obtained a larger amount of
clearance.

4.2.1. Retraction Algorithm

Our new retraction algorithm attempts to iteratively increase
the clearance of the configurations on the path by moving them
in a direction for which the clearance is higher. The problem
we want to solve is as follows. Convert a given path � into
a path �� such that for each � �i � �� the clearance is locally
maximal wherever possible. A configuration represents a lo-
cally maximum clearance when there is no direction in which
the clearance is larger. Algorithm 7 outlines our approach.

Algorithm 7 �-RETRACTION(discrete path�)
1: loop
2: ��
 �
3: dir
 RANDOMDIRECTION(step)
4: for all � �i in�� do
5: �ne	
 � �i � dir
6: if CLEARANCE��ne	� � CLEARANCE�� �i � then
7: � �i
 �ne	

8: �
 VALIDATEPATH������
9: return�

Globally speaking, our solution consists of several iterations.
In each iteration, we choose a random direction dir which in-
corporates all DOFs. We use a random direction because alter-
native choices will require too many time-consuming distance
calculations (such as moving in the direction of the steepest
descent). Then, we try to move each configuration � i in the
chosen direction, i.e. � �i
 � i � dir . (The operator � will be
defined below.) If the clearance of � �i is larger than the clear-
ance of � i , then � i is replaced by � �i . We stop retracting the
path when the average clearance of the path (see Definition 6)
does not improve anymore.

By updating the configurations, the path is forced to stretch
and shrink during the retraction which causes the follow-
ing two problems. First, the distance between two adjacent

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

856 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2007

Fig. 8. An impression of the retraction algorithm. The algo-
rithm retracts the initial path traversed by a square robot to the
medial axis. For each configuration in the discrete path, the
guided random walk (small curve) is drawn.

configurations in the path can become larger than the max-
imum step size. This happens for example when the path
is pushed away from the obstacles. If this occurs, we insert
an appropriate configuration between them. Second, several
configurations can be mapped to a small region in which the
distance between two non-adjacent configurations is smaller
than the step size. This occurs for example when pieces of the
path are traversed twice. As we have seen in the previous sec-
tion, they can be removed easily.

An impression of a retraction is given in Figure 8. This
figure shows an initial and a retracted path traversed by a
square robot in a simple two-dimensional workspace. The
line segments between the paths are the guided random walks
of the configurations. We call these walks guided because a
configuration is updated only if its clearance increases. Note
(by close inspection) that extra configurations have been in-
serted at some places while configurations have been removed
at other places. After 40 iterations, the initial path has been
successfully retracted to the medial axis, resulting in a path
with large clearance. Although this example shows a retrac-
tion for a robot with only two DOFs, the retraction can also be
applied to robots with more DOFs such as an articulated robot
with six joints.

4.2.2. Algorithmic Details

A discrete path consists of a series of configurations. We
require that the distance between each pair of adjacent
configurations is at most step. We calculate the distance be-
tween two configurations q and r by summing the weighted
partial distances for each DOF 0 � i � n that describes the
configurations, i.e.

d�q� r� 	
����n�1�

i	0

[i d�qi � ri �]2�

The calculation of distance d�qi � ri � can be found in Sec-
tion 3.4.1. The clearance of the configurations is improved by
iteratively moving them in a random direction. We will show
how to compute such a direction and how to add this direc-
tion to a configuration. After an iteration of the algorithm,
the distance between two adjacent configurations may have
changed. We will show how to insert and delete appropriate
configurations to maintain a valid path. Finally, we discuss
how to choose an appropriate termination criterion.

Random direction vector Our goal is to create a random
direction q � such that the distance from configuration q to
q � q � equals step. The direction q � is composed of val-

ues for each DOF qi such that
��n�1

i	0 p2
i 	 step, where

pi 	 	 i d�qi � qi � q �i �. This expression shows how much each
DOF i contributes to the total distance. Let rnd be a vector
of random values between 0 and 1 such that

�n�1
i rndi 	

1, and let rndi be the random value for DOF i . Further-
more, let 	 	 �	0� � � �	n�1� be the weight vector. The-
orem 1 shows that the translational and rotational(1) com-
ponents of q � must be set to q �i 	 � rndi � step�

rnd�	 . The calcu-
lation of the rotational(3) component is more complicated.
We represent this component as a random 3D unit axis a 	
�ax � ay� az� and an angle of revolution about that axis.
(Since a revolution about a random axis of more than � ra-
dians is redundant, we constrain to 0 � � � .) This
representation can easily be converted to a quaternion, i.e.
q �i 	 �ax sin�
2�� ay sin�
2�� az sin�
2�� cos�
2��. Theo-
rem 1 shows that must be set to rndi � step�

rnd�	 .

Lemma 1. If the distances d�qi � qi � q �i � are set to
� rndi � step�

rnd�	 , then d�q� q � q �� 	 step.

Proof: The distance between q and q � q � is defined as��n�1
i	0 p2

i , where pi 	 	 i d�qi � qi � q �i �.
When setting d�qi � qi � q �i � to � rndi � step�

rnd�	 , we must prove

that
��n�1

i	0 p2
i 	 step. By definition, we have

d�q� q � q �� 	
����n�1�

i	0

	
	 i d�qi � qi � q �i �

2
�

By substitution, we get

d�q� q � q �� 	
����n�1�

i	0

�
�rndi � 	 i � step�

rnd � 	
�2

�

and hence,

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Geraerts and Overmars / Creating High-quality Paths for Motion Planning 857

d�q� q � q �� 	 step �
����n�1�

i	0

�
� rndi � 	 i�

rnd � 	
�2

	 step �
����n�1�

i	0

�rndi � 	 i �2

rnd � 	 �

Since rnd � 	 	�n�1
j	0�rnd j � 	 j �

2, we get

d�q� q � q �� 	 step �
����n�1�

i	0

�rndi � 	 i �2�n�1
j	0�rnd j � 	 j �2

�

and hence,
d�q� q � q �� 	 step� �

Lemma 2. Let q and q � be two rotational(1) values. If the
range of angle q � is set to �� � q � � � , then d�q� q � q �� 	
�q ��.

Proof: The distance between two rotational(1) values q and
r is defined as

d�q� r� 	 min��q � r �� q � r � 2�� r � q � 2���
Let r 	 q � q �. Then,

d�q� q � q �� 	 min��q � �q � q ���� q � �q � q ��
� 2�� �q � q ��� q � 2���

By substitution, we get

d�q� q � q �� 	 min��q ��� 2� � q �� q � � 2���
Because�� � q � � � , it holds that 2��q � � � and q ��2� �
� . Since q � � � , the minimum is determined by �q ��. Hence,

d�q� q � q �� 	 �q ��� �

Lemma 3. Let q and q � be two quaternions. The quaternion
q � represents a random (unit) axis and an angle of revolution
 about that axis. If the range of is set to 0 � � � , then
the distance d�q� q � � q� 	 .

Proof: The distance between two quaternions q and r is
defined as d�q� r� 	 min�2 arccos�q �r�� 2��2 arccos�q �r��.
Since is positive, the dot product q � r is also positive and
lies between 0 and 1. As a consequence, the arccos of the dot
product will lie between 0 and � . Hence, the distance between
q and r is equal to d�q� r� 	 2 arccos�q � r�.

Let q 	 q � � r . The quaternion q � represents a rota-
tion by around a unit axis a 	 �ax � ay� az�, i.e. q � 	
�ax sin�
2�� ay sin�
2�� az sin�
2�� cos�
2��. Hence, we
get

d�q� q � � q� 	 2 arccos��q � � r� � r��

After substitution, this can be shown to be equivalent to

d�q� q � � q� 	 2 arccos

�
�r � r� cos

�

2

��
�

The length of a quaternion that represents a rotation is always
equal to 1. Hence, r � r 	 1. By using 0 � � � and substi-
tution, we get

d�q� q � � q� 	 � �

Theorem 1. By setting the translational and rotational(1)
components of q � to q �i 	 � rndi � step�

rnd�	 and the rota-
tional(3) components of q � to q �i 	 �ax sin�
2�� ay sin�
2�,
az sin�
2�� cos�
2��, where a 	 �ax � ay� az� is a random
unit axis and angle 	 rndi � step�

rnd�	 , it holds that d�q� q� q �� 	
step.

Proof: The distance between two translational values qi and
qi � q �i equals

d�qi � qi � q �i � 	 d�qi � qi � q �i � 	 �qi � �qi � q �i �� 	 �q �i ��
Furthermore, Lemma 2 showed that the distance between two
rotational(1) values qi and qi � q �i equals

d�qi � qi � q �i � 	 �q �i ��
As we set q �i to

q �i 	 �
rndi � step�

rnd � 	 �

Lemma 1 implies that

d�q� q � q �� 	 step�

Finally, Lemma 3 showed that the distance between two
quaternions qi and qi � q �i equals

d�qi � qi � q �i � 	 d�qi � q
�
i � qi � 	 �

where q �i 	 �ax sin�
2�� ay sin�
2�� az sin�
2�� cos�
2��
and a 	 �ax � ay� az� is a random unit axis. By setting to

 	 rndi � step�
rnd � 	 �

Lemma 1 implies that

d�q� q � q �� 	 step� �

Besides choosing a random vector, we need to add a direc-
tion q � to configuration q. For translational and rotational(1)
DOFs, we add up the values. If the rotational(1) DOF is peri-
odic, we have to make sure that the value remains in the range
between 0 and 2� . For the rotational(3) DOF, q �i is multiplied
by qi .

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

858 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2007

Algorithm 8 VALIDATEPATH(discrete path�, discrete
path��)

1: i
 0
2: valid path ���
 �
3: while i � ��� � 1 do
4: ���
 ��� � �i
5: if d�� �i � � �i�1� � step then
6: � �int
 INTERPOLATE�� �i � � �i�1� 0�5�
7: if CLEARANCE�� �int� � CLEARANCE�� i�1� then
8: ���
 ��� � �int
9: else

10: ���
 ��� � i�1

11: i
 i � 1
12: ���
 ��� � �i
13: ���
 REMOVEBRANCHES�����
14: return���

Path validation As a path is forced to stretch and shrink dur-
ing the retraction, the path may not be valid after an iteration of
Algorithm 7. A discrete path � is valid if �i : d�� i � � i�1� �
step. In this section we will show how to construct a new valid
path. Algorithm 8 outlines our approach.

Let� be the original path and�� be the updated path. Fur-
thermore, let � i be the i th configuration on path � and � �i
be the corresponding (possibly updated) configuration on path
��. We construct a new path ��� which will initially contain
all configurations from �� and possibly new configurations to
assure that ��� is valid.

In each iteration of the loop, we concatenate configuration
� �i to the valid path ���. Then we check whether the distance
between two adjacent configurations on the updated path�� is
larger than the step size, i.e. we check if d�� �i � � �i�1� � step. If
this condition is true, we have to add an extra configuration to
path ��� to assure that ��� keeps valid. We consider two can-
didate configurations and choose the one that has the largest
clearance. The first one is the original configuration � i�1 and
the second one is created by interpolating halfway between
configurations � �i and � �i�1.

After the iterations, we add the last configuration of path
�� to the valid path ���. Finally, to remove superfluous
configurations, we apply Algorithm 6 on path ���. Recall that
this algorithm removes a configuration � ��i from path ��� for
which it holds that d�� ��i�1� �

��
i�1� � step.

Theorem 2. Algorithm 8 assures that discrete path ��� is
valid.

Proof: The input of the algorithm is a valid path � and a
possibly invalid path ��. We have to prove that the algorithm
creates a path ��� such that �i : d�� ��i � � ��i�1� � step.

Lines 4 and 12 imply that path ��� will contain each
configuration of the updated path ��. The maximum distance

between two adjacent configurations � �i and � �i�1 of path
�� is 2 � step which occurs when one of them is updated
while the other one is left unchanged. (Note that when both
configurations are updated, their relative distance remains the
same, and hence, they do not cause the path to be invalid.)
We insert one of the following two configurations to path ���.
The first candidate, � �int , is the configuration in the middle
of the straight-line in �free between � �i and � �i�1. As the dis-
tance between � �i and � �i�1 is halved, d�� �i � � �int� � step and
d�� �int � �

�
i�1� � step. The second candidate is configuration

� i�1. It holds that d�� �i � � i�1� � step and d�� i�1� �
�
i�1� �

step. As path ��� contains the sequence � �i , the candidate
configuration, and � �i�1, path��� will remain valid. Finally, as
Algorithm REMOVEBRANCHES only removes a configuration
� ��i when d�� ��i�1� �

��
i�1� � step, it will not invalidate the path.

Hence, Algorithm 8 constructs a valid path���. �

Termination criterion An important issue is when to ter-
minate the algorithm. In each iteration of the algorithm, we
only update a configuration if its clearance increases. Such an
update can lead to insertions and deletions of configurations.
If a configuration � is inserted, then the clearance of � will
be equal to or higher than the clearance of the configuration
before it was updated. If a configuration � � is deleted, it will
not play a role anymore. However, � � could have a high clear-
ance while a possibly inserted configuration could have a low
clearance. Hence, while each configuration can obtain a higher
clearance, the average clearance can actually decrease. As this
worst-case scenario may occur incidentally, we have to take
this into account in our termination criterion.

We terminate the algorithm when the improvement of the
average clearance in k consecutive iterations is smaller than
some small threshold �. We conducted experiments to find ap-
propriate values for these parameters. We observed that setting
k to 25 and � to step
10 led to mature convergence.

4.3. Experiments

In this section, we investigate the extent to which the �-
retraction and �-retraction algorithms can improve the clear-
ance along six paths.

4.3.1. Experimental Setup

We considered the environments and their corresponding paths
depicted in Figure 9. These are the same test environments as
before. The paths were obtained by applying the Path pruning
heuristic on the paths of Figure 3. They have the following
properties:

Planar As the robot has two translational DOFs, a retraction
in the workspace will result in a path having the op-
timal amount of clearance. The experiments will show
whether a retraction in the �-space is competitive.

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Geraerts and Overmars / Creating High-quality Paths for Motion Planning 859

Fig. 9. The six test environments and their corresponding initial paths. For the Wrench and Hole environments, the robot has
been depicted separately at the lower right.

Simple corridor This environment has ample free space in
which the small free-flying cylinder operates. Both al-
gorithms will introduce an extra amount of clearance as
they both move the robot to the middle of the corridor.
However, the �-retraction algorithm should outperform
the�-retraction algorithm as it also considers rotational
DOFs.

Corridor The winding corridor forces the free-flying elbow-
shaped robot to rotate. As there is little room between
the walls of the corridor and the robot, it may be hard to
increase the clearance along the path.

Wrench This environment features a large moving object in
a small workspace. We expect that the �-retraction al-
gorithm will be outperformed by the �-retraction algo-
rithm as the rotational DOFs are of major concern in this
environment.

Hole The free-flying robot must rotate in a complicated way
to get through the hole. Only where the robot passes
through the hole, the clearance is small. Hence, the im-
provement of the minimum amount of clearance along
the path shows the potential of the �-retraction algo-
rithm.

Manipulator The articulated robot operates in a constrained
environment. The clearance along the path is very small.
The�-retraction algorithm cannot be applied as it can-
not handle rotational DOFs. Again, an increase in the

minimum and average amounts of clearance along the
path will show the potential of the �-retraction algo-
rithm.

We subdivided each path in consecutive configurations
such that the distance between each two adjacent configu-
rations is at most some predetermined distance step. The step
sizes for the paths can be found in Table 1. Our distance met-
ric uses weights 	 i for the DOFs of a robot. These are listed in
Table 2.

In each run, we recorded the minimum, maximum and av-
erage clearance of the path. As the �-retraction algorithm is
non-deterministic, we ran this algorithm 100 times for each
experiment and calculated the averages. Each run was termi-
nated when the improvement of the average clearance in 25
consecutive iterations was smaller than some small threshold,
step
10.

4.3.2. Experimental Results

The results are listed in Table 6 and visualized in Figure 10.

Planar A retraction in the workspace results in a path having
the optimal amount of clearance. The statistics show that
the �-retraction technique reached these optimal val-
ues. However, for robots having two translational DOFs,
we recommend the �-retraction technique as this tech-
nique is considerably faster.

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

860 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2007

Table 6. Clearance statistics for the six environments. A
larger clearance indicates a better result. The �-retraction
statistics are averages over 100 independent runs.

Planar Clearance Time

min avg max s

Initial path 0.00 2.47 7.15 –

�-retraction 1.79 4.49 8.32 0.8

�-retraction 1.79 4.49 8.32 9.4

Simple corridor Clearance Time

min avg max s

Initial path 0.16 1.91 3.83 –

�-retraction 0.62 2.62 3.96 0.7

�-retraction 1.21 3.64 4.25 6.0

Corridor Clearance Time

min avg max s

Initial path 0.01 0.59 2.44 –

�-retraction 0.22 1.15 3.22 1.0

�-retraction 0.27 1.87 4.57 27.6

Wrench Clearance Time

min avg max s

Initial path 0.00 4.17 11.32 –

�-retraction 2.11 7.12 12.38 12.4

�-retraction 1.99 7.83 15.03 373.8

Hole Clearance Time

min avg max s

Initial path 0.28 1.81 5.97 –

�-retraction 0.79 3.08 6.85 0.6

�-retraction 1.05 3.44 7.24 12.7

Manipulator Clearance Time

min avg max s

Initial path 0.00 0.14 0.35 –

�-retraction n.a. n.a. n.a. n.a.

�-retraction 0.05 0.29 0.43 26.8

Simple corridor As expected, a large increase in clearance
was introduced by the retraction algorithms. At the ex-
pense of five extra seconds of computing time, the �-
retraction technique doubled the minimum amount of
clearance and increased the average clearance by 39%
with respect to the�-retraction technique.

Corridor Although there is little room between the walls
of the corridor and the robot, the techniques were still
able to increase the clearance along the path. Again, the
�-retraction technique outperformed the �-retraction
technique but this took much more computation time.

Wrench Both algorithms needed relatively long times as the
environment was larger than the other ones. Both algo-
rithms were successful in increasing the clearance. The
�-retraction technique performed slightly better with re-
spect to increasing the average and maximum clear-
ance. However, the�-retraction technique was 6% bet-
ter with respect to the minimum clearance. This was due
to the early termination of the �-retraction, as shown by
decreasing the termination threshold.

Hole The �-retraction technique doubled the amount of
minimum and average clearance along the path. The
�-retraction technique outperformed the �-retraction
technique because all DOFs were taken into account. The
minimum amount of clearance along the path was fur-
ther improved by 33%.

Manipulator The minimum clearance along the initial path
was nearly zero. The �-retraction technique successfully
introduced some clearance along the path. Although
there is little room for the manipulator to move, the al-
gorithm doubled the average clearance along the path.
This extra clearance may be crucial in high-cost envi-
ronments to guarantee safety. For clarity, we only visu-
alized a part of the sweep volume of the manipulator in
Figure 10.

4.4. Combining Path Length and Path Clearance

We have now studied techniques which separately compute
short or high-clearance paths. In practice, these criteria are
combined, i.e. most applications require a short path keeping
some minimum amount of clearance �cmin� from the obstacles.
Notice that these criteria seem to contradict each other: creat-
ing shortcuts will pull the robot to the obstacles while adding
clearance pushes it away.

The stated two-objective optimization problem can be ad-
dressed by first adding clearance to the path. (To reduce the
running time of the �-retraction technique, the retraction of
a configuration could be stopped when its clearance exceeds
the value of cmin.) Then, the path length is reduced by apply-
ing the Partial shortcut technique while respecting the min-
imum amount of clearance. This can be easily achieved by
adding the following code in the for loop to Algorithm 3: if
CLEARANCE�� ��i � � cmin then goto 2.

As an example, we used the first three retracted paths of
Figure 10. We set cmin to 1.0, 0.4 and 0.7, respectively, which

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Geraerts and Overmars / Creating High-quality Paths for Motion Planning 861

Fig. 10. A close-up of the paths in the six environments. The
pictures in the left column show parts of the initial paths. The
paths in the middle column are the result of the �-retraction
technique while the paths on the right have been created by
one particular run of the �-retraction technique.

equal to the step sizes listed in Table 1. Then, we applied the
Partial shortcut technique (for 20 seconds) while respecting the
minimum amount of clearance. Figure 11 shows the results, to-

gether with the high-clearance and short paths to facilitate the
comparison. Visual inspection makes clear that the two criteria
can easily be combined, resulting in high-quality paths.

5. Conclusions

For many applications, a path should be short and should keep
some amount of minimum clearance from obstacles. These
two criteria seem to contradict each other: a short path will pull
the robot to obstacles while clearance pushes it away. A high-
quality path can be obtained, removing the redundant motions
after a particular amount of clearance is added to the path. In
this paper, we proposed novel techniques for decreasing the
path length, increasing the clearance along a path, and a tech-
nique that combines these optimization criteria.

We compared three simple heuristics to decrease the path
length, and showed that the Path pruning heuristic is a fast
and effective technique that can be used to decrease the path
length. The length can be further decreased by the Shortcut
heuristic, which is often used as this technique is easy to im-
plement. However, this technique can have difficulties remov-
ing all redundant (rotational) motions as all DOFs are interpo-
lated simultaneously. We presented a new technique, Partial
shortcut, which takes only one DOF into account in each opti-
mization step. Experiments showed that these redundant mo-
tions are now successfully removed. Another advantage of this
technique is that the Partial shortcut technique creates shorter
paths than the Shortcut technique. Reasonably short paths are
obtained within one second of computation time on a modern
personal computer.

In this paper, we focused on paths traversed by holonomic
robots. An interesting topic for future research is to extend the
Shortcut and Partial Shortcut method such that non-holonomic
constraints are satisfied.

We also presented two new simple algorithms that increase
the clearance along paths. They improve on existing algo-
rithms since higher amounts of clearance for a larger diver-
sity of robots are obtained. Moreover, they do not need com-
plex data structures and (manual) preprocessing. The first
algorithm, �-retraction, is fast but it can only deal with
rigid, translating bodies. The second algorithm, �-retraction,
is slower but it outperforms the workspace-based algorithm as
higher amounts of clearance along the paths are obtained. Fur-
thermore, it can handle a broader range of robots which may
reside in arbitrary high-dimensional configuration spaces.

The running times indicate that improving the clearance
along paths is too slow to be applied online. (They are much
larger than the running times for creating the initial paths.)
However, in applications where safety is important, the run-
ning times are not that crucial. For example, due to the
difficulty of measuring and controlling the precise position of
a manipulator arm, the arm can be damaged if it moves near
obstacles. Improving the clearance at the cost of a few minutes

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

862 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2007

Fig. 11. Paths with high-clearance, short length and their combination.

of calculation time can prevent damage to the robot and its
environment.

We expect that the running times of the �-retraction algo-
rithm can be dramatically decreased by incorporating learning
techniques. This is a topic of future research. However, when
on-line performance is required, a complete roadmap should
preferably be retracted to the medial axis in the preprocessing
phase. We show in Geraerts and Overmars (2006) that a path
can indeed be extracted from such a pre-processed roadmap in
real time.

Acknowledgements

Part of this research has been funded by the Dutch BSIK/
BRICKS Project.

References

Amato, N.M., Bayazit, O., Dagle, L., Jones, C., and Vallejo,
D. (1998). Choosing good distance metrics and local plan-
ners for probabilistic roadmap methods. IEEE International
Conference on Robotics and Automation, pp. 630–637.

Baginski, B. (1997). Efficient motion planning in high dimen-
sional spaces: The parallelized Z3-method. International
Workshop on Robotics in the Alpe-Adria-Danube Region,
pp. 247–252.

Berchtold, S. and Glavina, B. (1994). A scalable optimizer for
automatically generated manipulator motions. IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pp. 1796–1802.

van den Bergen, G. (2003). Collision Detection in Interac-
tive 3D Environments. Morgan Kaufmann, San Francisco,
CA.

Brock, O. and Khatib, O. (2002). Elastic strips: A frame-
work for motion generation in human environments. In-
ternational Journal of Robotics Research, 21: 1031–
1052.

Chen, P. C. and Hwang, Y. K. (1998). SANDROS: A dynamic
graph search algorithm for motion planning. IEEE Trans-
actions on Robotics and Automation, 14: 390–403.

Choset, H. and Burdick, J. (2000). Sensor-based exploration:
The hierarchical generalized Voronoi graph. International
Journal of Robotics Research, 19: 96–125.

Geem, C., Siméon, T., Laumond, J.-P., Bouchet, J.-L., and
Rit, J.-F. (1999). Mobility analysis for feasibility studies
in CAD models of industrial environments. IEEE Interna-

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Geraerts and Overmars / Creating High-quality Paths for Motion Planning 863

tional Conference on Robotics and Automation, pp. 1770–
1775.

Geraerts, R. and Overmars, M. H. (2006). Creating high-
quality roadmaps for motion planning in virtual environ-
ments. IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4355–4361.

Hoff, K., Culver, T., Keyser, J., Lin, M., and Manocha,
D. (2000). Interactive motion planning using hardware-
accelerated computation of generalized Voronoi diagrams.
IEEE International Conference on Robotics and Automa-
tion, pp. 2931–2937.

Hsu, D., Latombe, J.-C., and Sorkin, S. (1999). Placing a robot
manipulator amid obstacles for optimized execution. IEEE
International Symposium on Assembly and Task, pp. 280–
285.

Isto. P. (2002). Constructing probabilistic roadmaps with pow-
erful local planning and path optimization. IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp.
2323–2328.

Kavraki, L. E. and Latombe, J.-C. (1998). Probabilistic road-
maps for robot path planning. In Practical Motion Plan-
ning in Robotics: Current Approaches and Future Direc-
tions (eds K. Gupta and A. del Pobil), pp. 33–53, John Wi-
ley.

Kavraki, L. E., Švestka, P., Latombe, J.-C., and Overmars,
M. H. (1996). Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation, 12: 566–580.

Kim, J., Pearce, R., and Amato, N. M. (2003). Extracting opti-
mal paths from roadmaps for motion planning. IEEE In-
ternational Conference on Robotics and Automation, pp.
2424–2429.

Kuffner, J. J. and LaValle, S. M. (2000). RRT-connect: An
efficient approach to single-query path planning. IEEE In-

ternational Conference on Robotics and Automation, pp.
995–1001.

LaValle, S. M. (2006). Planning Algorithms. http://planning.
cs.uiuc.edu. Cambridge University Press, New York, NY.

Lien, J.-M., Thomas, S., and Amato, N. M. (2003). A gen-
eral framework for sampling on the medial axis of the free
space. IEEE International Conference on Robotics and Au-
tomation, pp. 4439–4444.

Masehianand, E., Admin-Naseri, M. R., and Khadem, S. E.
(2003). Online motion planning using incremental con-
struction of medial axis. IEEE International Conference on
Robotics and Automation, pp. 2928–2933.

Sánchez, G. and Latombe, J.-C. (2002). On delaying collision
checking in PRM planning. Application to multi-robot co-
ordination. International Journal of Robotics Research, 21:
5–26.

Sekhavat, S., Švestka, P., Laumond, J.-P., and Overmars, M. H.
(1998). Multilevel path planning for nonholonomic robots
using semiholonomic subsystems. International Journal of
Robotics Research, 17: 840–857.

Vleugels, J. and Overmars, M. H. (1998). Approximating
Voronoi diagrams of convex sites in any dimension. Inter-
national Journal of Computational Geometry and Applica-
tions, 8: 201–221.

Švestka, P. (1997) Robot Motion Planning Using Probabilistic
Road Maps. PhD thesis, Utrecht University.

Wein, R., van den Berg, J. P., and Halperin, D. (2005). The
Visibility-Voronoi complex and its applications. Annual
Symposium on Computational Geometry, pp. 63–72.

Wilmarth, S. A., Amato, N. M., and Stiller, P. F. (1999).
MAPRM: A probabilistic roadmap planner with sam-
pling on the medial axis of the free space. IEEE Interna-
tional Conference on Robotics and Automation, pp. 1024–
1031.

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universiteitsbibliotheek Utrecht on August 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

