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Abstract

A simple and efficient randomized algorithm is pre-
sented for solving single-query path planning problems
in high-dimensional configuration spaces. The method
works by incrementally building two Rapidly-exploring
Random Trees (RRTs) rooted at the start and the goal
configurations. The trees each explore space around
them and also advance towards each other through the
use of a simple greedy heuristic. Although originally
designed to plan motions for a human arm (modeled as
a 7-DOF kinematic chain) for the automatic graphic
animation of collision-free grasping and manipulation
tasks, the algorithm has been successfully applied to a
variety of path planning problems. Computed exam-
ples include generating collision-free motions for rigid
objects in 2D and 3D, and collision-free manipulation
motions for a 6-DOF PUMA arm in a 3D workspace.
Some basic theoretical analysis is also presented.

1 Introduction

Motion planning problems arise in such diverse
fields as robotics, assembly analysis, virtual prototyp-
ing, pharmaceutical drug design, manufacturing, and
computer animation. Such problems involve searching
the system configuration space of one or more compli-
cated geometric bodies for a collision-free path that
connects a given start and goal configuration, while
satisfying constraints imposed by complicated obsta-
cles. Although complete algorithms are known for this
general class of problems [25, 6], their computational
complexity limits their use to low-dimensional config-
uration spaces. This limitation, lower-bound hardness
results [24], and strong motivation to handle practical
planning problems have stimulated the development
and success of many path planning methods that use
randomization (e.g., [1, 3, 4, 5, 7, 10, 11, 16, 15, 17,
23, 26]). The accepted tradeoff is that the methods
are incomplete, but will find a solution with any prob-
ability given sufficient running time. The key is to
develop randomized methods that converge quickly in

Figure 1: Path planning for a 7-DOF human arm

practice, yet are simple enough to yield consistent be-
havior and analysis.

Randomized path planning algorithms have usu-
ally been designed for one of two contexts: single-
query planning, and multiple-query planning [15]. For
single-query planning, it is assumed that a single path
planning problem must be solved quickly, without any
preprocessing. One of the earliest and most popular
methods to solve this problem was the randomized po-
tential field approach [4]. For multiple-query planning,
it is assumed that many path planning problems will
be solved for the same environment. In this case, it is
worthwhile to preprocess information and store it in a
data structure that allows fast path planning queries.
The probabilistic roadmap approach was the first to
address this problem [15]. A graph is constructed in
the configuration space by choosing many configura-
tions at random, and using a local planner to connect
pairs of nearby configurations.

Due to its simplicity and reliable behavior, the
probabilistic roadmap approach has enjoyed consid-
erable success in recent years, and current research is
focused on analysis [3] and treatment of pathological
cases [1]. Even for single-query problems where the
randomized potential field planner might yield better
performance, the probabilistic roadmap method has
been preferred due to its reliability. The randomized
potential field planner often finds fast solutions for
single-query problems by encoding a greedy heuristic
in the form of a potential function over the config-
uration space. When the planner becomes stuck in
local minima, random walks are used to attempt an
escape; however, it is very difficult to ensure reliable
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performance.
This naturally leads to the quest for a simple, reli-

able approach that shares many of the great properties
of probabilistic roadmaps, yet is specifically designed
for single-query path planning. We present a simple
path planning method called RRT-Connect that com-
bines Rapidly-exploring Random Trees (RRTs) [18]
with a simple greedy heuristic that aggressively tries
to connect two trees, one from the initial configuration
and the other from the goal. The idea of constructing
search trees from the initial and goal configurations
comes from classical AI bidirectional search, and an
overview of its use in previous motion planning meth-
ods appears in [12]. Recently, an interesting random-
ized bidirectional planner was proposed for high-DOF
problems in [11]. The key to our ideas is the use of
RRTs as a simple sampling scheme and data structure
that reliably leads to fast and uniform exploration of
the configuration space. RRT-Connect was originally
developed to plan collision-free motions for 7-DOF hu-
man arms for the automatic animation of grasping and
manipulation tasks for animated characters in interac-
tive 3D virtual environments [14] (see Figure 1). How-
ever, it has also been found to be both efficient and
reliable for a variety of path planning problems.

2 Rapidly-Exploring Random Trees

Path planning can generally be viewed as a search
in a configuration space, C, in which each q ∈ C
specifies the position and orientation of one or more
geometrically-complicated bodies in a 2D or 3D world.
A metric ρ is assumed to be defined on C. Let Cfree

denote the set of configurations for which these bodies
do not collide with any static obstacles. The obstacles
are modeled completely in the world, and an explicit
representation of Cfree is not available. However, us-
ing a collision detection algorithm, a given q ∈ C can
be tested to determine whether q ∈ Cfree. The single-
query path planning task is to compute a continuous
path from an initial configuration, qinit, to a goal con-
figuration, qgoal, without performing any preprocess-
ing.

The Rapidly-exploring Random Tree (RRT) was
introduced in [18] as an efficient data structure and
sampling scheme to quickly search high-dimensional
spaces that have both algebraic constraints (arising
from obstacles) and differential constraints (arising
from nonholonomy and dynamics). The key idea is
to bias the exploration toward unexplored portions of
the space. Related ideas have been developed in path
planning research, such as Ariadne’s clew algorithm
[21] and expansive configuration spaces [11]. In [19]
an RRT-based approach to kinodynamic and nonholo-
nomic planning was presented that generated and con-
nected two RRTs in a state space, which generalizes C.
In the current paper, we present an approach that is

BUILD RRT(qinit)
1 T .init(qinit);
2 for k = 1 to K do
3 qrand ← RANDOM CONFIG();
4 EXTEND(T , qrand);
5 Return T

EXTEND(T , q)
1 qnear ← NEAREST NEIGHBOR(q, T );
2 if NEW CONFIG(q, qnear, qnew) then
3 T .add vertex(qnew);
4 T .add edge(qnear, qnew);
5 if qnew = q then
6 Return Reached;
7 else
8 Return Advanced;
9 Return Trapped;

Figure 2: The basic RRT construction algorithm.
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Figure 3: The EXTEND operation.

tailored to problems in which there are no differential
constraints, and the problem can be expressed in C.

The basic RRT construction algorithm is given in
Figure 2. A simple iteration in performed in which
each step attempts to extend the RRT by adding
a new vertex that is biased by a randomly-selected
configuration. The EXTEND function, illustrated in
Figure 3, selects the nearest vertex already in the
RRT to the given sample configuration, q. The func-
tion NEW CONFIG makes a motion toward q with
some fixed incremental distance ε, and tests for col-
lision. This can be performed quickly (“almost con-
stant time”) using incremental distance computation
algorithms [9, 20, 22]. Three situations can occur:
Reached, in which q is directly added to the RRT be-
cause it already contains a vertex within ε of q; Ad-
vanced, in which a new vertex qnew �= q is added to
the RRT; Trapped, in which the proposed new vertex
is rejected because it does not lie in Cfree. The top row
of Figure 4 shows an RRT constructed in a 2D square
space. The lower figure shows the Voronoi diagram
of the RRT vertices; note that the probability that a
vertex is selected for extension is proportional to the
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Figure 4: An RRT is biased by large Voronoi regions to
rapidly explore, before uniformly covering the space.

area of its Voronoi region. This causes the RRT to be
biased to rapidly explore. In addition, Section 4 shows
that RRTs arrive at a uniform coverage of the space,
which is also a desirable property of the probabilistic
roadmap planner.

3 The RRT-Connect Path Planner

The RRT-Connect planner is designed specifically
for path planning problems that involve no differential
constraints. In this case, the need for incremental mo-
tions is less important. The method is based on two
ideas: the Connect heuristic that attempts to move
over a longer distance, and the growth of RRTs from
both qinit and qgoal.

The Connect heuristic is a greedy function that can
be considered as an alternative to the EXTEND func-
tion in Figure 2. Instead of attempting to extend an
RRT by a single ε step, the Connect heuristic iterates
the EXTEND step until q or an obstacle is reached,
as shown in the CONNECT algorithm description in
Figure 5. This operation serves a similar function as
the artificial potential function in a randomized po-
tential field approach. In both cases, the heuristic
allows rapid convergence to a solution. However, with
our method, the greedy heuristic is combined with
the rapid and uniform exploration properties of RRTs,
which seems to avoid the well-known pitfalls of local
minima. In a sense, with the CONNECT heuristic,
the basin of attraction continues to move around as
the RRT grows, as opposed to an artificial potential
field method, in which the basin of attraction remains
fixed at the goal.

Figure 5 shows the RRT CONNECT PLANNER al-
gorithm, which may be compared to the BUILD RRT
algorithm of Figure 2. Two trees, Ta and Tb are main-
tained at all times until they become connected and
a solution is found. In each iteration, one tree is ex-

CONNECT(T , q)
1 repeat
2 S ← EXTEND(T , q);
3 until not (S = Advanced)
4 Return S;

RRT CONNECT PLANNER(qinit, qgoal)
1 Ta.init(qinit); Tb.init(qgoal);
2 for k = 1 to K do
3 qrand ← RANDOM CONFIG();
4 if not (EXTEND(Ta, qrand) =Trapped) then
5 if (CONNECT(Tb, qnew) =Reached) then
6 Return PATH(Ta, Tb);
7 SWAP(Ta, Tb);
8 Return Failure

Figure 5: The RRT-Connect algorithm.

tended, and an attempt is made to connect the nearest
vertex of the other tree to the new vertex. Then, the
roles are reversed by swapping the two trees. This
causes both trees to explore Cfree, while trying to es-
tablish a connection between them. The growth of
two RRTs was also proposed in [19] for kinodynamic
planning; however, in each iteration both trees were
incrementally extended toward a random configura-
tion. The current algorithm attempts to also grow
the trees towards each other, which has been found to
yield much better performance.

Several variations of the above planner can also
be considered. By replacing CONNECT by EX-
TEND in RRT CONNECT PLANNER, a simple, two-
RRT planner is obtained. Adapting this planner to
problems that involve differential constraints would
most likely give significant performance improvement
over the planner in [19]. Another variant can be
obtained by replacing EXTEND with CONNECT in
RRT CONNECT PLANNER. This would lead to a path
planner with an even stronger greedy heuristic. One
of the key advantages of the CONNECT function is
that a long path can be constructed with only a single
call to the NEAREST NEIGHBOR algorithm (each new
vertex will become the nearest neighbor for the next
one). This advantage motivates the choice of a greed-
ier algorithm; however, if an efficient nearest-neighbor
algorithm [2, 13] is used, as opposed to the obvious
linear-time method, then it might make sense to be
less greedy. Another possible variation is to make
CONNECT add only the last vertex in the EXTEND
iteration to the RRT, in order to reduce the number
of nodes. Since these choices depend on the nearest-
neighbor method and the distribution of problems, we
focus on a single variation in this paper.
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Figure 6: Growing two trees towards each other.

4 Analysis

Both the basic RRT and the RRT-Connect algo-
rithms are analyzed in this section. The key result is
that the distribution of the RRT vertices converges to-
ward the sampling distribution, which is usually uni-
form. Furthermore, the RRT-Connect algorithm is
probabilistically complete. Unfortunately, we do not
have a theoretical characterization of the rate of con-
vergence (which is observed to be very fast in prac-
tice).

Let Dk(q) denote a random variable whose value is
the distance of q to the closest vertex in G, in which
k is the number of vertices in an RRT. Let dk denote
the value of Dk. Let ε denote the incremental dis-
tance traveled in the EXTEND procedure (the RRT
step size).

Lemma 1 Suppose Cfree is a convex, bounded, open,
n-dimensional subset of an n-dimensional configura-
tion space. For any q ∈ Cfree and positive constant
ε > 0, lim

k→∞
P [dk(q) < ε] = 1.

Sketch of Proof: Let q be any point in Cfree, and
let q0 denote any initial RRT vertex. Let B(q) denote
a ball of radius ε, centered on q. Let B′(q) = B(q) ∩
Cfree. Note that µ(B′(q)) > 0, in which µ denotes
the volume (or measure) of a set. Initially, d1(q) =
ρ(q, q0). At each RRT iteration, the probability that
the randomly-chosen point will lie in B′(q) is strictly
positive. Therefore, if all RRT vertices lie outside of
B(q), then E[Dk]−E[Dk+1] > b for some positive real
number b > 0. This implies that lim

k→∞
P [dk(q) < ε] =

1. �

For the statements that follow, assume that Cfree

is a nonconvex, open set with a single connected com-
ponent.

Lemma 2 Suppose Cfree is a nonconvex, bounded,
open, n-dimensional connected component of an n-
dimensional configuration space. For any q ∈ Cfree

and positive real number ε > 0, lim
n→∞P [dn(q) < ε] =

1.

Sketch of Proof: Let q0 denote any initial RRT ver-
tex. If q0 and q are in the same connected component
of a bounded open set, then there exists a sequence,
q1, q2, . . ., qk, of configurations such that a sequence
of balls, B = B1(q1), . . ., Bk(qk), can be constructed
with Bi∩Bi+1 �= ∅ for each i ∈ {1, . . . , n−1}, q0 ∈ B1,
and q ∈ Bk. Let Ci = Bi ∩ Bi+1. Note that B can
be constructed so that each Ci is open, which implies
that µ(Ci) > 0. Lemma 1 can be applied inductively
to each Ci to conclude that lim

n→∞P [dn(qi) < ε] = 1 for
a point in qi ∈ Ci. In each case, ε can be selected to
guarantee that an RRT vertex lies in Ci. Eventually,
the probability approaches one that an RRT vertex
will fall into Bk. One final application of Lemma 1
implies that P [dn(q) < ε] = 1. �

Let X denote a vector-valued random variable that
represents the sampling process used to construct an
RRT. This reflects the distribution of samples that
are returned by the RANDOM CONFIG function in
the EXTEND algorithm. Usually, X is characterized
by a uniform probability density function over Cfree;
however, we will allow X to be characterized by any
smooth probability density function. Let Xk denote
a vector-valued random variable that represents the
distribution of the RRT vertices.

Theorem 1 Xk converges to X in probability.

Sketch of Proof: Consider the set Yk = {q ∈
Cfree | ρ(q, v) > ε ∀v ∈ Vk}, in which Vk is the
set of RRT vertices after iteration k. Intuitively, this
represents the “uncovered” portion of Cfree. From
Lemma 2, it follows that Yk+1 ⊆ Yk and µ(Yk) ap-
proaches zero as k approaches infinity. Recall that
the RRT construction algorithm adds a vertex to V if
the sample lies within ε of another vertex in V (ε is
the RRT step size). Each time this occurs, the new
RRT vertex follows the same probability density as
X. Because µ(Yk) approaches zero, the probability
density functions of X and Xk differ only on some set
Zk ⊆ Yk. Since µ(Yk) approaches zero as k approaches
infinity, µ(Zk) also approaches zero. Since µ(Zk) ap-
proaches zero and the probability density function of
X is smooth, Xk converges to X in probability. �

Corollary 1 The RRT-Connect algorithm is proba-
bilistically complete and vertices converge to a uniform
distribution over Cfree.
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Sketch of Proof: The result follows by observing
that Theorem 1 holds for multiple RRTs, in addition
to a single RRT. Furthermore, the Connect heuristic
generates all of the usual RRT vertices, plus additional
vertices. These additional vertices will contribute to
the covering of Cfree, and therefore do not adversely
affect the convergence results, in which µ(Yk) and
µ(Zk) approach zero. �

5 Experiments

This section presents some preliminary experiments
performed on a 270 MHz SGI O2 (R12000) worksta-
tion. We first performed hundreds of experiments on
over a dozen examples for planning the motions of
rigid objects in 2D, resulting in 2D and 3D configu-
ration spaces. Path smoothing was performed on the
final paths to reduce jaggedness. Some of these results
are shown in Figure 7, in which the left column shows
the RRTs, and the right column shows the correspond-
ing solutions. Averaging over 100 trials, the (wall-
clock) computation times were 0.13s, 1.52s, and 1.02s,
for these three examples. The collision checking soft-
ware used for all experiments was the RAPID library
based on OBB-Trees developed by the University of
North Carolina [8]. The performance was compared
between RRT-Connect and several other RRT-based
variants, including an adaptation of the algorithm pre-
sented in [19]. We determined that for most problems,
the Connect heuristic improves the running time, of-
ten by a factor of three or four, especially for unclut-
tered environments. In very cluttered environments,
the Connect heuristic only slightly increases running
time in comparison to using the EXTEND function to
construct two trees. Thus, it seems that the greedy
behavior is worthwhile on average. Additional experi-
ments may reveal other variants that further improve
performance. We are currently comparing some of the
variants discussed in Section 3.

A variety of more challenging experiments were per-
formed. Figure 8 depicts a computed solution for a 3D
model of a grand piano (over 4500 triangles) moving
from one room to another amidst walls and low obsta-
cles. Several tricky rotations are required of the piano
in order to solve this query. The average computation
time was 12.5 seconds (100 trials). Manipulation plan-
ning experiments have been conducted for a model of
a 6-DOF Puma industrial manipulator arm. Com-
bined with an inverse kinematics algorithm, the RRT-
Connect planner facilitates a task-level control mecha-
nism for planning manipulation motions by computing
three motions for a high-level request to move an ob-
ject: 1) move the arm to grasp an object; 2) move the
object to a target location; 3) release the object and
return the arm to its rest position. Several snapshots
of a path to move a book from the middle shelf to the
bottom shelf of a desk is shown in Figure 9. This set

RRTs Final Path

Figure 7: Several basic results.

of three queries were each solved in under 4 seconds
on average.

As mentioned previously, the Connect heuristic
works most effectively when one can expect relatively
open spaces for the majority of the planning queries.
The Connect heuristic was originally developed with
this kind of problem in mind [14]. Figure 1 shows a
human character playing chess. Each of the motions
necessary to reach, grasp, and reposition a game piece
on the virtual chessboard were generated using the
RRT-Connect planner in under 2 seconds on average.
The human arm is modeled as a 7-DOF kinematic
chain, and the entire scene contains over 8,000 trian-
gle primitives. The speed of the planner allows for the
user to interact with the character in real-time, and
engage in a game of “interactive virtual chess.” The
planner can also handle more complicated queries with
narrow passages in Cfree, such as the assembly mainte-
nance scene depicted in Figure 10. Here, the task is to
grasp the tool from within the box and place it inside
the tractor wheel housing. Solving this particular set
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Figure 8: Moving a Piano

of queries takes an average of 17 seconds. The scene
contains over 13,000 triangles. Since we used a non-
incremental 3D collision checking algorithm, perfor-
mance could potentially be improved significantly by
using an alternate algorithm (for example [9, 20, 22]).

6 Conclusions

A randomized approach to single-query path plan-
ning is proposed that yields good experimental per-
formance over a wide variety of examples. The tech-
nique is based on Rapidly-exploring Random Trees
(RRTs) and the Connect heuristic. Some of the key
practical advantages of the planning method include:
1) it does not require parameter tuning; 2) prepro-
cessing is not required, yet interactive performance
can be obtained for many difficult problems; 3) sim-
ple and consistent behavior was observed through re-
peated experiments; 4) a reasonable balance has been
struck between greedy searching (as in a potential field
planner) and uniform exploration (as in a probabilis-
tic roadmap planner); 5) the method is well-suited
for incremental distance computation algorithms and
fast nearest-neighbor algorithms. The practical per-
formance observed so far is encouraging; however, an
extensive study that involves many benchmarking ex-
amples would be useful, and is currently under in-
vestigation. Undoubtedly, pathological cases exist for
RRT-Connect, and more experimental work is needed
to determine conditions under which RRT-Connect

Figure 9: Path planning for a 6-DOF Puma robot.

will yield very poor performance. We have shown
theoretically that the planner is probabilistically com-
plete and the vertices tend to a uniform distribution
over Cfree. Theoretical analysis of the convergence
rate remains, which is one topic under current inves-
tigation.

Although the RRT-Connect has proven to be very
successful in our experiments, we are aware of several
intertwined factors that could improve performance
even further. Experimental evaluation of these issues
form the basis of our future research: 1) the length of
each RRT step can be optimized by computing the ra-
dius of a collision-free ball in Cfree using the result of
the distance computation algorithm; 2) the CONNECT
heuristic can be used entirely in the RRT-Connect
planner, as opposed to a combination of CONNECT
and EXTEND ; 3) vertices that are discovered during
each incremental step within CONNECT do not need
to be added to the RRT to increase efficiency; 4) ap-
proximate nearest neighbor methods can be used to
reduce computation time for n vertices from O(n) to
near-logarithmic time; 5) incremental collision detec-
tion algorithms can be used.
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