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Abstract— Lifting heavy objects poses a unique challenge for
humanoid robots and more broadly, for any robot which is
responsible for maintaining its own balance. Configurations that
are balanced without supporting a heavy object’s weight might
not be balanced while the object’s weight is being supported,
and vice versa. In this paper, we present a series of planning
techniques which resolve these issues without relying on real
time control methods or extensive force/torque sensing. We
introduce the novel concept of the Virtual Task Dimension
(VTD) for motion planners, which can handle the transition
between balancing constraints. We describe the implementation
of these techniques and offer suggestions for obtaining fast and
reliable solutions. We also demonstrate the algorithms running
on a DRC-Hubo humanoid robot.

I. INTRODUCTION

Interest in using humanoid robots to perform intense
physical labor has been growing in recent years, especially
with the DARPA Robotics Challenge (DRC) pushing the
state of the art in robot autonomy. One of the challenges
in the DRC Trials required the robot to clear wooden blocks
out of a tightly constricted area as seen in Figure 2.

Previous work has addressed the challenge of heavy lifting
and carrying for humanoid robots. In [1] the robot’s wrist
and ankle force sensor information is used to generate
whole body motions which can track a desired gait pattern
and Zero Moment Point (ZMP) trajectory while carrying a
heavy object of unknown weight. This idea is built upon
in [2] where the robot exploits singular configurations to
minimize joint torque. A contact force based approach to
compliant heavy lifting is given by [3]. However, none of
these methods address the challenge of avoiding obstacles
throughout the heavy lifting task; they assume an open,
collision-free environment. Additionally, all of these methods
rely heavily on sensor feedback, placing a burden on the user
to tune control gains so that they exhibit the desired response
properties.

In the interest of quickly generating robot motions for
heavy lifts which avoid obstacles and require minimal real
time control and sensing for success, we build on the
task constrained motion planning [4] and Constrained Bi-
directional Rapidly exploring Random Tree (CBiRRT) [5]
framework. CBiRRT is a probabilistically complete motion
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(a) Before supporting the object
Balanced

(b) After supporting the object
Falls Forward

(c) After supporting the object
Balanced

(d) Before supporting the object
Falls Backward

Fig. 1: The robot needs to change its configuration before it can
support the weight of the object. The purple sphere is the CoM of
the configuration, and the disk on the ground is its projection.

planning algorithm which is able to rapidly generate motion
plans in high dimensional space while respecting task con-
straints. Since humanoid robots are high degree of freedom
systems with a wide variety of constraints, CBiRRT is well
suited for planning in this domain.

However, traditional use of CBiRRT cannot plan the
transition from the configuration seen in Figure 1a to the
configuration in Figure 1c. It can only handle the heavy
lifting problem if there exists a picking configuration that
is valid both with and without the target object’s weight
being supported (see Figure 4a). If the target object is
heavy or the robot’s support polygon is too small, such a
configuration might be difficult or impossible to find (see
Figure 4b). Therefore, while performing a heavy lift, the
planner must be able to account for the transition from
supporting none of the target object’s weight to supporting
all of its weight, and this can be thought of as a change in
the mass model of the balancing constraint. In order to plan
this transition, we introduce the concept of the Virtual Task
Dimension (VTD). The VTD is a dimension appended to the
configuration space which represents some additional piece
of context for the planner. In the case of heavy lifting, the



VTD is used to represent the fraction of the target object’s
weight which the robot is supporting. Including the VTD
in the configuration space enables a planner to explore this
dimension and therefore plan out the mass model transition.
The theory behind the VTD is covered in greater detail in
subsection II-C.

In section II we discuss all the relevant constraints for
lifting heavy objects, how to use those constraints to find start
and goal configurations, and how the Virtual Task Dimension
fits into this framework. In section III we describe our im-
plementation and some practical considerations for quickly
generating reliable plans. In section IV we demonstrate the
algorithm working in two distinct scenarios on the DRC-
Hubo humanoid robot. Finally, section V finishes with a
discussion of potential future work.

Fig. 2: Debris Removal Task at the DARPA Robotics Challenge
Trials

II. THEORY

Generating a motion plan involves solving for start/goal
configurations and then searching for a path between them.
Start and goal configurations must satisfy the constraints
of the initial and final objectives respectively (for example,
reaching for an item or placing an item on a table). For
an entire path to be valid, each point along the path must
satisfy the feasibility constraints, such as being balanced and
collision-free. In this section, we discuss how to formulate
the constraints needed to plan heavy lifts, how to use those
constraints to find start/goal configurations, and finally how
to use the Virtual Task Dimension to plan a heavy lift.

A. Constraint Functions

There are four types of constraints which are crucial
to the heavy-lifting problem: Balancing constraints, end-
effector pose constraints, collision constraints, and joint
torque constraints. To resolve these constraints, we use
recursive hierarchical nullspace projection [6].

1) Balance Constraints: A humanoid robot must keep
its center of mass above its support polygon in order to
maintain quasistatic balance. In some scenarios, the balance
constraint could be maintained by rejecting configurations
which violate it. However, in the case of heavy lifting, it
is unreasonable to simply hope that balanced configurations
will be sampled, so a projection operation is needed. We
use the center of mass Jacobian method to drive the robot’s
center of mass into its support polygon.

2) End-effector Constraints: In order to handle end-
effector constraints, we employ Task Space Regions [7]. Task
Space Regions provide a convenient and generalized way
of describing and solving end effector constraints, including
articulated constraints. A critical example of how TSRs are
used for planning heavy lifts is for finding kinematically
feasible grasp configurations. We assume that any given
target object has a set of viable grasp points or grasp regions
and then we represent those points or regions as a set of
TSRs.

Additionally, we must constrain both feet to remain sta-
tionary during a plan. Any relative motion between the
feet while both are being used for support would produce
dangerous internal forces inside the robot which could result
in mechanical or electrical damage. In this paper, we do
not consider the possibility of taking a step during a plan;
we leave the challenges of taking steps and selecting foot
placement for future work.

3) Collision Constraints: In wide-open environments, col-
lision constraints may be handled by simply rejecting config-
urations which exhibit collisions. Alternatively, using convex
collision geometries allows configurations to be projected
out of collision using gradient descent like in [8] and [9].
Escaping collisions using gradient descent can be useful in
cluttered environments where the passages between obstacles
are thin.

4) Torque Constraints: A fourth constraint which may be
important to consider for heavy lifting (depending on the
strength of the robot) is torque constraints. Since physical
motors have torque limits, any configuration whose joint
torques exceed those limits must be considered invalid. The
probability of randomly sampling a configuration which
violates torque limits is low enough that simply rejecting
invalid configurations (instead of trying to project them)
should be suitable. The Jacobian Transpose can be used to
compute the static joint torques for a given configuration.

B. Finding Start/Goal Configurations

Before CBiRRT can generate a path, it is necessary
to determine start/goal configurations. These configurations
must satisfy all of the feasibility constraints (i.e. they must be
balanced and collision-free) in addition to achieving an ob-
jective. The objective can also be represented as a constraint,
ideally as a Task Space Region, which describes where the
robot should grab or where it should deliver its payload. Be-
cause of the high dimensionality of humanoid robot systems
and the nonlinearity of the constraint functions, analytical



solutions for satisfying all of these constraints simultaneously
do not generally exist.

Therefore, in order to solve all the simultaneous con-
straints, we used stochastic gradient descent. In wide-open,
easy environments it might be possible to simply use or-
dinary gradient descent, but when dealing with cluttered or
challenging environments, it is common to get caught in local
minima.

Fig. 3: Examples of useful seeding configurations.

Rather than beginning gradient descent attempts from
random configurations, we start them from seeding configu-
rations which are known to be far from singularities or local
minima. Samples of the seeding configurations which were
used in this project can be seen in Figure 3.

In order to plan a heavy lift, it is necessary to find
two lifting configurations: one which satisfies all constraints
before supporting the object’s weight, and one which satisfies
all constraints while supporting the object’s weight.

C. Planning with a Virtual Task Dimension

Once start and goal configurations are determined, we use
CBiRRT [5] to find paths between them. In some scenarios,
it may be possible to find picking configurations where the
robot is balanced both with and without the weight of the
target object. This is often the case if the target object is light-
weight in comparison to the robot, or if the robot has a very
large support polygon. Figure 4a shows an example where
the valid configurations before and after have an overlap
(the purple region). To plan between configurations whose
constraint functions do not have an overlap, we introduce
the concept of the Virtual Task Dimension (VTD). Figure 4c
shows an approximate projection of valid configurations
across the VTD for heavy lifting.

The VTD is a continuous dimension which is appended
to the robot’s configuration space. A configuration which
supports none of the object’s weight has a VTD value of
0.0 while a configuration which supports all of the object’s
weight has a VTD value of 1.0. As the CBiRRT planner
explores the robot’s configuration space, it will also explore
the VTD. As it does, the constraints which are applied to
the robot’s configurations will change according to the VTD
value; specifically, as the VTD value increases, the balance
constraint will need to support more of the target object’s
weight. The planner can explore the VTD freely, moving
arbitrarily forward and backward through the dimension,
however the “Connect” operation in CBiRRT makes this

(a) Light-weight object (b) Heavy object

(c) Projection of valid Pelvis X/Y translations along
with VTD for the same heavy object as Figure 4b.

Fig. 4: These are projections of two components (Pelvis X and
Y) from the 22 dimensional configuration space during a lift.
Pelvis X and Y are the X/Y translations of the robot’s root Pelvis
link. Blue regions are valid while the robot supports none of the
object’s weight; red regions are valid while the robot supports all
of the object’s weight. In Figure 4a the purple region represents
an overlap of the blue and red regions, indicating that there do
exist lifting configurations that are balanced both with and without
the object’s weight supported. Figure 4b has no such intersection,
therefore there is no way to plan a valid path from the blue to the
red without introducing the VTD. Figure 4c shows the space of
valid configurations for Figure 4b once the VTD is introduced; the
planner is able to explore this space freely in order to find a valid
path from a point in the blue region to a point in the red region.

behavior rare, and path shortening during post-processing
will tend to reduce the VTD traversal into a straight line
if possible.

The VTD is needed as a dimension in the planner in
order to find feasible paths between the start and goal
configurations. Gradient descent or naive interpolation may
fail to produce valid connections in the case of obstacles
or local minima, as seen in Figure 5b. If such obstacles
do not exist, then using CBiRRT will be as fast as a naive
interpolation, because CBiRRT employs bi-directional con-
nection attempts between the configurations, which simply
interpolates between the points. This means that CBiRRT
will be as efficient as a naive approach in the scenarios
when a naive approach would succeed while still being



(a) Valid configuration without supporting
the object’s weight

(b) Invalid interpolation between start and
goal configurations

(c) Valid configuration while supporting
the object’s weight

Fig. 5: Example of why planning the transition between start and goal configurations is necessary.

probabilistically complete and therefore capable of tackling
more challenging scenarios than what a naive approach could
handle.

III. IMPLEMENTATION

Whole body planning is generally difficult due to its high
dimensionality and tight constraints. In this section, we will
discuss the particular way we approached the whole body
planning problem, highlighting various techniques which
help to make it tractable. Some of these techniques are based
on our particular use of DRC-Hubo, but may also apply to
other humanoid robots.

A. Floating Base Method
Each leg on DRC-Hubo has 6 degrees of freedom, and as

mentioned in subsubsection II-A.2, we constrain both feet
to remain stationary. This means that 12 dimensions of the
joint space are fully constrained. If these joints were included
in the configuration space that is used by the planner, an
inordinate amount of time would be spent projecting the legs’
joint values onto their constraint manifold. Instead, we leave
the legs’ joint angles out of the configuration space used for
planning, and simply use the six degrees of freedom (three
translational and three rotational) of the robot’s pelvis (root)
link. Imagine that the robot’s legs are removed and the pelvis
could float around and rotate itself freely.

Analytical inverse kinematics is used to ensure that the
robot’s floating-base poses are feasible. If no valid leg joint
configuration exists for a given pelvis pose, the analytical
IK is guaranteed to report it. Moreover, even though a
6-DoF analytical IK will usually produce 8 unique joint
configurations, the legs on the DRC-Hubo can only ever
have up to one valid joint configuration once the legs’
joint limits are taken into account. This means that there
is no redundancy to account for while generating a plan,
and so the planner is still probabilistically complete even
without explicitly considering these degrees of freedom. We
implicitly plan the joint angles of the legs by planning the
six degrees of freedom of the pelvis and verifying that there
exists a valid set of leg configurations for any given pelvis
pose.

B. Task Decomposition

We decompose the lifting task into four phases: Approach,
Lift, Deliver, and Release.

1) Approach: The Approach phase can be thought of as
an ordinary picking task. The entire task must take place
at a VTD value of 0. This can be done either by removing
the VTD from the configuration space or by setting both the
minimum and maximum values of the VTD domain to 0.

2) Lift: The Lift phase is where the robot transitions from
supporting none of the object’s weight to supporting all of
its weight. In other words, this is where the plan will travel
from a VTD value of 0.0 to a VTD value of 1.0. The start
configuration of the Lift phase must be the goal configuration
of the Approach phase, and the goal configuration of the Lift
phase will be used as the start configuration of the Deliver
phase.

3) Delivery: The Delivery phase can be thought of as an
ordinary placement task. In the Delivery phase, the VTD
value must always be 1.0.

4) Release: The Release phase is used when the final
objective is for the robot to let go of the target object. The
Release phase is exactly like the Lift phase, except that it
traverses from a VTD value of 1.0 to a value of 0.0.

C. Trajectory Generation

Using CBiRRT generates a path through configuration
space, but execution on a robot requires a trajectory which
specifies joint values as a function of time. For this we used
a time-optimal trajectory generation algorithm by Kunz [10].
This algorithm accepts as input a path as well as maximum
speeds and accelerations for each dimension in the configu-
ration space. For the maximum speeds and accelerations, we
chose small values to ensure that the robot always maintains
quasistatic behavior.

IV. EXPERIMENTS

To demonstrate the theories presented, we present two
distinct heavy lifting experiments using a DRC-Hubo. In
the first, the robot needs to reach forward and lift a heavy
wooden block while avoiding a nearby obstacle. In the



second experiment, the robot needs to use both hands to
lift a heavy metal truss onto a small platform.

No force-torque sensors were used in either experiment.
The robot was running through the trajectory using only joint
encoder feedback with relatively stiff PD gains. All of the
robot’s balancing was due to the planner. In general, we
consider force-torque sensor feedback to be a useful tool
for maintaining balance, but we refrained from using it for
these experiments in order to demonstrate the utility of our
kinematic-only planning approach.

A. DRC-Hubo

The robot platform used for these experiments is the
DRC-Hubo. The DRC-Hubo is a humanoid robot made by
Rainbow, Inc. and KAIST in South Korea. It was designed
as an upgrade to its predecessor the Hubo2+ with the goal
of competing in the DARPA Robotics Challenge. The robot
has a mass of roughly 55 kg and stands at 147 cm. Each
leg has 6 degrees of freedom and each arm has 7. There is
one additional degree of freedom which allows the torso to
rotate about the vertical axis.

B. Block Lifting Problem

In the first task, DRC-Hubo must lift a 4.04 kg (7.34% of
the robot’s mass) wooden block which was located approx-
imately 65 cm away from the robot. Additionally, there is a
table behind the robot which acts as an obstacle. The table’s
presence makes it impossible for the robot to shift its pelvis
back far enough to compensate for the weight of the block.
The planner automatically decides to instead use the left arm
to counter-balance the weight of the block, as can be seen
in Figure 6a.

C. Truss Lifting Problem

The second task had DRC-Hubo lift a 4.01 kg metal truss
onto a small metal platform. The dimensions of the truss are
31 cm x 31 cm x 152 cm, and it can be seen in Figure 6d.
This task demonstrates the ability of the planner to handle
dual-arm manipulation constraints.

D. Timing Results

Runtimes for random sampling methods like CBiRRT
are variable, so timing data were collected for 100 runs
of each task and are laid out in Table I. The dual-arm
manipulation constraint for the Truss Lifting Problem has
a much lower dimensional constraint manifold than the
single-arm manipulation of the Block Lifting Problem, so
it generally took longer to solve.

Block Truss
Finding Goals Planning Finding Goals Planning

Average 32.24 6.16 60.92 54.94
Min 6.14 0.63 34.95 6.21
Max 133.23 48.62 151.70 358.55
Std Dev 24.91 8.90 23.23 60.49

TABLE I: Timing data for the two experiments. All units are in
seconds.

V. CONCLUSIONS AND FUTURE WORK

This work introduces the concept of the Virtual Task Di-
mension for use in heavy lifting. We describe a comprehen-
sive and probabilistically complete method for autonomously
planning heavy lifts. This method was demonstrated in two
distinct trials on a physical DRC-Hubo. Prior methods for
achieving heavy lifts with a humanoid robot focused heavily
on real time feedback control and neglected to account
for obstacles in the environment. The method we present
generates a feasible path ahead of time, which gives far
greater assurance that the robot’s actions will be successful.
We do not consider this method to be a replacement for
the existing real-time control methods; instead we see it as
a way to provide stronger guarantees that those methods
will perform effectively by giving them a feasible baseline
trajectory.

In future work, we intend to address the question of
autonomously deciding upon foot placement for the lift,
and perhaps being able to take steps during the plan. A
hierarchical planning methodology [11] might suit these
challenges well, coupled with task-driven support polygon
reshaping [12].

One major weakness of our planning method is that it
assumes prior knowledge of the target object’s mass. A single
plan may be valid for a range of object masses, depending
on the size of the robot’s support polygon, but for heavy
objects, a small percentage of error in the estimate could
easily make a plan invalid. To overcome this issue, we
will investigate methods for generating contingency plans
for a broad range of potential object masses and finding
connections between the plans to switch between them while
the robot is interacting with the object.

We also believe that the Virtual Task Dimension concept
has far broader applications than the heavy lifting problem.
The VTD effectively enables a CBiRRT framework to handle
constraints which change as a function of time or some
other contextual parameter which is not normally considered
part of the robot’s configuration space. An example which
is strongly related to heavy lifting would be dragging; the
VTD would allow the planner to reason about the trade-
off in joint torques between lifting (which will reduce the
friction force) and pushing/pulling. Another related example
would be negative VTD, which would enable the planner to
reason about leaning some of its weight onto an object in
the environment while still maintaining balance.

In future work, we will investigate alternative methods of
generating dynamically stable trajectories from the planned
path which do not rely on moving slowly. For example,
AutoBalancer [13] was used in [14] to generate dynamically
balanced trajectories using RRTs.



(a) Grabbing the wooden block (b) Raising the block over the table (c) Placing the block onto the table

(d) Grabbing the metal truss (e) Raising the truss over the platform (f) Placing the truss onto the platform

Fig. 6: DRC-Hubo performing heavy lift tasks
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