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Abstract— The Covariant Hamiltonian Optimization and Mo-
tion Planning (CHOMP) algorithm has found many recent
applications in robotics research, such as legged locomotion
and mobile manipulation. Although integrating kinematic con-
straints into CHOMP has been investigated, prior work in
this area has proven to be slow for trajectories with a large
number of constraints. In this paper, we present Multigrid
CHOMP with Local Smoothing, an algorithm which improves
the runtime of CHOMP under constraints, without significantly
reducing optimality. The effectiveness of this algorithm is
demonstrated on two simulated problems, and on a physical
HUBO+ humanoid robot, in the context of door opening.
We demonstrate order-of-magnitude or higher speedups over
the original constrained CHOMP algorithm, while achieving
within 2% of the performance of the original algorithm on the
underlying objective function.

I. INTRODUCTION

In recent years, the Covariant Hamiltonian Optimization

and Motion Planning (CHOMP) algorithm has proven to be

a successful method for quickly generating locally optimal

trajectories while avoiding obstacles [1]. In the original

CHOMP algorithm, equality constraints were not taken into

consideration. However, such constraints are abundant in

robotic applications [2], [3], due to their ability to specify

end effector orientation and closed kinematic chains, to name

just two examples. Research has been done on incorporating

constraints into CHOMP, such as using constraints as goal

sets [4] as opposed to a fixed goal point. However, it is

known that constrained CHOMP has a long runtime when

many constraints are used (see subsection II-B for details).

In this paper, we present Multigrid CHOMP, a method

incorporating the multigrid method into constrained CHOMP

to drastically decrease the runtime while maintaining the

high trajectory quality of the original algorithm. Furthermore,

we present the addition of Local Smoothing to Multigrid

CHOMP to improve its optimality further without increasing

the runtime significantly.

One key motivation for this work is the DARPA Robotics

Challenge (DRC), a U.S. government-sponsored competi-

tion aimed at promoting innovation in robotic technology

for disaster response operations. The DRC involves eight

tasks, including driving a utility vehicle, walking over rough

terrain, and climbing a ladder, among others. Although the

algorithm presented here was developed to address the door

opening task of the DRC, many the tasks share in common

a need for an efficient planner capable of generating high

quality robot motion which obeys kinematic constraints.
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Fig. 1: Joint angles for the HUBO+ humanoid robot (left) and door
(right) before (top) and after (bottom) minimizing accelerations
while preserving closed kinematic chain constraints on a door
opening task. The traces plotted on the left are the six DOF for the
arm (fine colored lines), as well as waist yaw (bold gray line). Note
that the C0-continuous original trajectory, generated via IK, has
been transformed into one with continuous higher-order derivatives
throughout.

The rest of this document is organized as follows: sec-

tion II provides the mathematical background underlying

constrained CHOMP, as well as the algorithms used. The

software implementation is outlined in section III, and sec-

tion IV details experimental evaluations on two simulated

platforms and one real robotic platform. Finally, section V

concludes the work.

II. THEORY

The goal of CHOMP is to produce high-quality robot

motion which is smooth in the sense of minimizing some

sum of squared derivatives along the trajectory. Let a robot

configuration for a robot with m degrees of freedom (DOF)

be represented by a vector q P Rm. Then a trajectory ξ “
pqT

1
, . . . , qTn qT is represented in CHOMP as a sequence of n

waypoints equally spaced in time, with two fixed endpoints

q0 and qn`1.

Using the finite difference approximation of a derivative,

we can always represent any sum of squared derivatives



along the trajectory as a function of the form

fpξq “
1

2
}Kξ ` e}2 (1)

where K is a finite differencing matrix, and e is a vector

holding information about boundary conditions. In this work,

we minimize squared acceleration, leading to a finite differ-

encing matrix of size mpn ` 2q ˆ mn:
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We also set e to encode zero velocity at the endpoints by

inserting appropriately scaled copies of q0 and qn`1 at each

end, with zeros in between. The expression for fpξq can be

simplified into the following quadratic equation:

fpξq “
1

2
}Kξ ` e}2 “

1

2
pKξ ` eqT pKξ ` eq

“
1

2
ξTAξ ` ξT b ` c

(2)

where A “ KTK, b “ 1

2
KT e, c “ 1

2
eT e. In particular, we

note that the matrix A of size mnˆmn is positive definite,

band-diagonal, and quite sparse.

Although the original CHOMP algorithm was intended to

generate collision free motion, we do not explicitly consider

collision checking in this work. Instead, we assume that

the trajectories are validated for collisions before and after

optimization. However, we note that all of the efficient

collision handling routines from the original CHOMP work

can be folded into the objective function f , and the effects

of obstacle avoidance would arise straightforwardly in the

objective gradient ∇f without significantly altering the dis-

cussion below.

A. Handling constraints via Lagrange multipliers

In solving a trajectory optimization problem, we are often

faced with constraints such as keeping a manipulated ob-

ject upright, or preserving a closed kinematic chain. Such

constraints (and many others) can be phrased as a set of

equality constraints on the trajectory of the form hpξq “ 0,

with h : Rmn Ñ R
k.

Constrained CHOMP, originally proposed in [4], uses the

method of Lagrange multipliers to set up a gradient descent

problem to optimize trajectories under constraints. The over-

all Lagrangian in the vicinity of the current trajectory ξ is

given by

Lpδ, λq “ fpξ ` δq ` λThpξ ` δq (3)

Our goal is to take a small step δ at each iteration to

move toward the constraint manifold while moving along

the manifold to smaller objective values. By linearizing the

Lagrangian and adding a penalty on step size, we obtain

Lpδ, λq “ fpξq ` ∇fpξqT δ
looooooooomooooooooon

Linearization of
fpξ`δq

`

Step
size penalty
hkkkikkkj

1

2α
δTAδ `λT rhpξq ` Hδs

loooooomoooooon

Linearization of
hpξ`δq

(4)

Here, H denotes the constraint Jacobian, which is typically

quite sparse since each of the k constraints is usually only

active during a single timestep of the trajectory (as shown

in Figure 12). Also, δTAδ “ }δ}2A is the norm of δ under

the metric A, as opposed to the usual Euclidean metric. The

intent is to produce incremental changes to the trajectory

which are themselves smooth (i.e. contributing little addi-

tional acceleration). By using A as the metric, the incremen-

tal change δ is projected onto a space of trajectories with

low acceleration. Accordingly, if the gradient and constraint

suggest that a particular point should be moved, the change

will cause its neighbors to also move in the same direction.

Therefore, changes take less time to propagate down the

trajectory, speeding the overall convergence of the algorithm.

Finally, the variable α is a parameter specifying the tradeoff

between objective function reduction and stepsize, and is

required due to the fact that the first order Taylor series

expansion is only valid for a small neighborhood around ξ.

The gradient of L can be set to 0 to obtain δ and λ.

∇L “

«

BL
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BL
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ff

“
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(5)

Solving for δ gives

δ “ ´ αpA´1 ´ A´1HTQ´1HA´1q∇fpξq

´ A´1HTQ´1hpξq
(6)

where Q “ HA´1HT . This is the update rule for gradient

descent originally derived in [4].

B. Constrained CHOMP runtime

Most previous implementations of CHOMP have focused

on minimizing velocity, as opposed to higher-order deriva-

tives. This is largely due to the choice of algorithm for

solving equations of the form

Ax “ y

using the A matrix defined in the previous section. In pre-

vious CHOMP implementations, Thomas’ backsubstitution

algorithm [5] was used due to both its Opmnq speed and

existing implementations in a number of math tools and

libraries. However, the algorithm is restricted to tridiagonal

matrices. For CHOMP, A is a tridiagonal matrix only if K

has only 2 entries per row. Thus if Thomas’ algorithm is used

for applying A´1, minimizing velocity is the only choice.

In our implementation, the skyline Cholesky decompo-

sition [6] is used instead. Because A is band-diagonal, its



Cholesky decomposition is also band-diagonal, allowing us

to solve this equation in both Opmnq space and time for

any particular derivative used. With a suitable choice of K

and e, our algorithm could minimize jerk just as easily as

acceleration without affecting the asymptotic runtime.

Now, we consider the runtime for a single update of

Equation 6 above. The constraint Jacobian H is of size

kˆmn. Since typically there is a separate set of constraints

active at each timestep, and since the number of constraints

per timestep is on the order of the number of degrees of

freedom of the robot, we also assume k “ Opmnq. Using

an optimized solver for A´1, we assume the matrix A´1HT

can therefore be computed in Opm2n2q time as opposed to

the Opm3n3q runtime implied by naı̈ve matrix inversion.

Unfortunately, the matrix Q in Equation 6 is dense, and

inverting it takes time Opk3q “ Opm3n3q. This step is the

dominant one in the algorithm, leading to an overall runtime

of Opm3n3q for the constrained CHOMP update.

C. Multigrid CHOMP

In order to reduce the runtime of constrained CHOMP,

we adopt a multiresolution approach to produce Multigrid

CHOMP. Multigrid is a group of algorithms used for quickly

solving numerical problems [7], which has been successfully

used in recent graphics applications to approximate solutions

to complex diffusion problems [8], [9]. The core motivation

for multigrid in our domain is that gradient descent will

converge more quickly when initialized using an already

near-optimal trajectory. Hence, we start with a coarsely

discretized trajectory with a small number of waypoints

n, and alternate stages of optimizing the trajectory with

upsampling by inserting new points between each pair of

previous trajectory elements, doubling n at each iteration.

When optimizing an upsampled trajectory, we fix the

points retained from the downsampled version, and only

optimize the new points added during the upsampling step.

Although this is by no means globally optimal, it does result

in an approximate 8x speedup by reducing the size of the

matrix Q in Equation 6 by a factor of two. This is equivalent

to computing A, H , and Q as defined in the previous

subsections, and subsequently discarding the rows/columns

corresponding to the odd-numbered timesteps (i.e. the fixed

points); however, our implementation avoids computing the

discarded elements.

In the next section, we introduce the concept of local

smoothing, which attempts to alleviate the loss in optimality

due to fixing alternate waypoints, while still maintaining low

runtimes. See the bottom row of Figure 3 for an illustration

of the algorithm in action.

D. Local Smoothing

As previously stated, Multigrid CHOMP only performs

optimization on the newly added points at each temporal

resolution. Although the fixed points may have been optimal

in the coarser representation, their optimal location changes

once the new points are considered. In order to rectify

this effect, local smoothing is applied. The motivation for

performing local smoothing is to apply slight “tweaks” to

the previously established positions of waypoints without

incurring the runtime penalty associated with the constrained

CHOMP update from Equation 6. The underlying assump-

tion is that the overall shape of the trajectory is most likely

correct, but that the addition of new waypoints creates small

opportunities for shortcutting motions that depend only on

the new points added.

To perform local smoothing, the Lagrange Multiplier

method is used to minimize ft subject to ht “ 0, where

ft is the contribution to the objective function (squared

acceleration) at time t, which considers only qt and just

enough neighboring waypoints to evaluate the finite differ-

ence approximation to the derivative. Similarly, ht is the

vector of constraints associated with timestep t, and Ht is

the Jacobian of ht with respect to qt.

Just as in subsection II-A, we set δt be the incremental

update to the trajectory in the vicinity of qt, and perform

gradient descent using Lagrange multipliers. Linearizing the

Lagrangian produces

Ltpδt, λtq “ ft ` ∇fT
t δt `

1

2α
δTt δt ` λT

t rht ` Htδts (7)

Similarly to Equations 4 through 6, we obtain the update

rule

δt “ ´α
´

I ´ H
T

t pHtH
T

t q´1
Ht

¯

∇ft ´ H
T

t pHtH
T

t q´1
ht (8)

The δt terms are summed up and applied to ξ, producing a

new trajectory that is smoother, but which also satisfies the

constraints. Although the overall process is similar to that of

subsection II-A, local smoothing is much faster due to the

fact that it only needs to consider a single trajectory element

(and a small, constant number of neighbors) at a time, and

hence the runtime for a local smoothing update across the

trajectory is Opmnq.

Our overall method, outlined in Algorithm 1 iterates con-

strained CHOMP, local smoothing, and upsampling. To de-

termine whether either constrained CHOMP or local smooth-

ing has converged, we look at the approximate relative error

of the objective function, computed by

εapprox “
fpξq ´ fpξ ` δq

fpξ ` δq

Considering solely fpξq and not hpξq to determine conver-

gence could, in theory, lead to problems if the trajectory is

far from the constraint manifold, but we observed no such

issues in practice. All constraints in our experiments were

successfully met to nearly 10 decimal places by the time

optimization had converged.

III. IMPLEMENTATION

For this project, all code was implemented in C++, with

most matrix operations performed in OpenCV [10]. Our cus-

tom skyline Cholesky solver is built on top of the OpenCV

matrix math library, and was found to be much faster than

using the library’s own general matrix solvers to invert A.

Robot specifications were obtained from the OpenHUBO

project [11].



Algorithm 1 Multigrid CHOMP with Local Smoothing

1: function MULTIGRIDCHOMP(ξ)

2: while !CHOMPHasConverged(ξq do

3: ξ Ð ξ` CalculateCHOMPStep(ξ);

4: end while

5: while !LocalSmoothingHasConverged(ξq do

6: ξ Ð ξ` CalculateLocalSmoothingStep(ξ);

7: end while

8: if AtDesiredResolution() then

9: return ξ;

10: else

11: ξup Ð UpSample(ξ);

12: MultigridCHOMP(ξup);

13: end if

14: end function

ConstraintFactory

virtual Constraint* getConstraint(size_t tick, size_t total);

CircleConstraint HuboConstraintArmDoorConstraint

ArmDoorFactory HuboFactoryCircleFactory

Constraint

virtual   void evaluate(const Mat& q_t, Mat& h_t, Mat& H_t);
virtual size_t numOutputs();

Chomp

bool   doMultiGrid;
bool   doLocalSmoothing;
double stepSize;
double relErrorTolerance;

void optimize(const Mat& initialTrajectory, size_t n_max);

Fig. 2: UML class diagram indicating organization of our C++ code.
The Chomp solver itself is generic and re-usable across a variety
of problem instances, specified by subclassing the Constraint

and ConstraintFactory classes.

To maximize reusability, we use the Abstract Factory

design pattern [12] to encapsulate the problem-specific code

and separate it from the underlying solver. The core of Multi-

grid CHOMP with Local Smoothing is implemented in the

Chomp class, which is initialized with parameters of the opti-

mization, as well as a reference to a ConstraintFactory

object. The ConstraintFactory is responsible for gen-

erating individual Constraint objects for any given

timestep of the trajectory, specific to the particular appli-

cation. Each one evaluates the constraint function value

htpqtq, and the constraint Jacobian Htpqtq for a particular

timestep. When a low-resolution initial trajectory is given to

the Chomp object, Multigrid CHOMP with Local Smoothing

is run to find the optimal trajectory at a specified higher

resolution. The architecture is diagrammed in Figure 2.

IV. EXPERIMENTS

We demonstrate the proposed method in two simple simu-

lated scenarios, as well as on a physical robotic platform. The

first problem, referred to as the “Circle problem” concerns

a translating planar point that must snap to a circular path

during some portion of the trajectory. Next, in the “Arm Door

problem”, we consider a planar 2D arm opening a door.

Finally, we tackle the “Hubo problem” – opening a door

with a physical HUBO+ robot.

Throughout this section, we normalize all objective func-

tion values as a fraction of the initial trajectory’s objective

function value. That is, given an initial trajectory ξinit and a

final trajectory ξfinal, we compute the quantity

ρ “
fpξfinalq

fpξinitq

In general, ρ will be less than one as long as the ini-

tial trajectory is feasible (obeys constraints); however, an

infeasible initial trajectory may in fact be smoother than

the optimal feasible one, especially at coarse resolutions. In

presenting the results for each problem, we will also refer to

the performance metric, defined as follows:

Performance Metric “ pρMCLS ´ ρCCq ¨ 100%

where ρMCLS represents the normalized objective for Multi-

grid CHOMP with Local Smoothing and ρCC represents the

normalized objective for constrained CHOMP. The metric

can be considered as the percentage difference in objective

function values between the two algorithms, relative to the

initial trajectory (which is identical for both algorithms).

Data from our experiments are summarized in Table I, as

well as Figures 5, 9, and 13. In the table and plots, “CC”

refers to the original constrained CHOMP algorithm, “MC”

refers to Multigrid CHOMP, and “MCLS” refers to Multigrid

CHOMP with Local Smoothing.

A. Circle Problem

Our first example is a simple constraint problem for a

translating point (m “ 2), illustrated in Figure 3. The goal

is to move from some start point in the plane, represented

by the red dot at the upper left, to some end point in the

plane, represented by the final blue dot dot. The point is

constrained to be located on the circle for the middle half of

the trajectory (see Figure 4 for a diagram).

For the finest resolution tested (n “ 511), we found that

that computation time was decreased by a factor of 8, with

a performance metric of 6.6% (see Figure 5 for plots). For

all of the values of n, it is clear that using Local Smoothing

achieves a more optimal trajectory in terms of objective value

function than Multigrid CHOMP alone, while adding only

minimal extra computation time.

B. Arm Door Problem

The Arm Door Problem is a simplified version of the

DRC scenario, using the planar arm and door illustrated in

Figure 6. In both problems, we treat the combined robot

and door DOF’s as a single kinematic system. Matching the



Fig. 3: Illustration of Circle problem. The translating point “robot” must transition from the top left to the bottom right of the area,
while spending the middle 50% of the time on the circle. Top row: constrained CHOMP successfully warps the trajectory to minimize
acceleration while obeying the constraints. Bottom row: Multigrid CHOMP with Local Smoothing upsamples to add intermediate points
while continuing to refine the trajectory.

Point constrained on circle

t=0 0.25 0.75 1

Fixed

endpoint

Fixed

start point

Fig. 4: Circle problem constraint diagram. The point is constrained
to be on the circle during the middle 50% of the trajectory.
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Fig. 5: Circle problem timing and objective function results.

end effector pose with the door handle therefore represents

a closed kinematic chain constraint. An important effect

of this problem formulation is that the trajectory for the

door is modified, as well as that of the robot. For the

Arm Door problem, the robot configuration is specified by

three joint angles (shoulder, elbow and wrist), and the door

configuration is specified by a single hinge angle (m “ 4).

During first part of the trajectory, there is only one con-

straint; that the door is closed (hinge angle = 0˝). Throughout

the second half, the closed kinematic chain constraint is

active. At the midpoint of the trajectory, the pose of the

system is fully specified (door closed, hand on handle). See

Figure 8 for an illustration.

The initial trajectory is generated in two phases: for the

first half of the trajectory, the joint angles of the arm are

Fig. 6: Arm Door problem set-up. The planar arm has three degrees
of freedom, with a shoulder joint, elbow joint, and wrist joint. The
end effector and door handle will form a closed kinematic chain
during opening.

linearly interpolated to the initial grasping position; in the

second half, the door angle is linearly interpolated from

closed to open, while IK is used to fix the end effector to

the handle. Since the closed chain constraint leaves a single

remaining degree of freedom, minimizing acceleration essen-

tially amounts to re-timing the second half of the trajectory

to match up the derivatives at the midpoint, improving the

original C0 continuity. See Figure 7 for joint angles before

and after optimization.

For the finest discretization (n “ 511) of the Arm Door

problem, we decrease computation time by a factor of 22.6,

while achieving a performance metric 2.4% (see Figure 9). In

this case, Local Smoothing boosts performance by roughly

50% versus Multigrid CHOMP alone.
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Fig. 7: Joint angles for Arm Door problem before (left) and after
(right) optimization. Since the constraints on the second half of
the trajectory leave only a single degree of freedom, minimizing
accelerations largely corresponds to re-timing this portion of the
trajectory.

t=0 0.5 1

Fixed

midpoint

Grasping - closed chain Door angle = 0˚

Fixed

end point

Fixed

start point

Fig. 8: Arm Door problem constraint diagram. During the first
half of the trajectory, the door/handle is untouched, and during the
second half of the trajectory the end effector pose must agree with
the door handle. The configuration of the entire Arm Door system
is fully specified at the midpoint.

C. Hubo Problem

In our final example, we apply Multigrid CHOMP with

Local Smoothing to the DRC door opening problem. In this

case, we use the six DOF of the HUBO+ arm, as well as

the waist yaw joint. Additionally, we consider both the door

hinge and handle angle, for a total of m “ 9 DOF.

Figure 11 shows the constraint diagram. As shown in

the figure, during the first part of the trajectory, the door

is closed and nothing is touching the doorknob. Before the

HUBO+ robot grabs the doorknob, the end effector must

pass through a “pregrasp” pose. Although no constraints on

the end effector are enforced immediately before or after

pregrasp (as seen in Figures 11 and 12), this stage causes

the end effector to approach the door from slightly above
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Fig. 9: Arm Door problem timing and objective function results.

End e!ector

Door hinge angle

Door handle angle

Fixed

end point

Fixed

start point

Grasping - closed chain

Handle = 0˚ Handle = 45˚

t=0s 1s 1.5s 2.0s 3.0s 4.5s

Pregrasp pose

Door halfway open

Hinge = 0˚

Fig. 11: Hubo problem constraint diagram. In this problem, we
optimize jointly over seven degrees of freedom of the robot (six
arm DOF plus waist rotation), as well as the door hinge and door
handle, for a total of m “ 9 DOF.

and away from the doorknob. This prevents the end effector

from approaching an angle that could potentially cause the

fingers to get caught on the doorknob and damage the robot.

The initial trajectory for the Hubo problem is generated by

interpolating the arm joint angles to reach the pregrasp and

grasp poses. Thereafter, IK is used to manipulate the door

using linear ramps for door angle and handle angle, and the

waist joint is ramped linearly at the end of the trajectory to

augment the workspace of the arm when the doorway is fully

opened. Hence, the initial trajectory illustrated in Figure 1

is only C0 continuous, with discontinuities in the derivative

where various ramps are applied and trajectory generation

methods are switched.

Unlike the previous two examples, the Hubo problem

is executed on a physical robot (as shown in Figure 10),

which necessitates consideration of actual execution time.

The durations of the various trajectory phases depicted in

Figure 11 are selected by hand to allow sufficient time for

the door opening to take place without saturating torque or

velocity limits. We target a control frequency of 100 Hz,

resulting in a maximum of n “ 447 trajectory elements for

the roughly 4.5 second trajectory.

For the finest discretization, Multigrid CHOMP with Local

Smoothing achieves a speedup of nearly 25x over constrained

CHOMP, while reaching a performance metric of 2.1% (see

Figure 13). As the graphs in Figure 1 show, there is a visible

improvement in trajectory smoothness after optimization.

Once again, Local Smoothing accounts for a 50% improve-

ment over Multigrid CHOMP alone.

Due to constraints on planning time, we are currently

targeting the 25 Hz (n “ 111) resolution for our DRC

efforts (pending further improvements to the algorithm, see

section V). The results are still significant in this range, with

a speedup of about 12.5x and performance metric of 1.1%.

D. Discussion

Our experiments demonstrate that Multigrid CHOMP with

Local Smoothing retains nearly all of the optimality of

the original constrained CHOMP method, while providing

significantly faster performance. Runtime is reduced by a

factor of 8.0, 22.6, and 24.8 on the Circle, Arm Door, and

Hubo problems respectively.

The significant decrease in runtime can be attributed to

two main factors. First, Multigrid CHOMP spends the bulk



Fig. 10: Door opening trajectory successfully running on HUBO+ humanoid robot. Left to right: initial pose, pregrasp, grasping, door
half open with handle turned, final position with handle restored to zero angle.

Problem Circle (m “ 2) Arm Door (m “ 4) Hubo (m “ 9)

n 15 31 63 127 255 511 15 31 63 127 255 511 27 55 111 223 447

Time (s)

CC 0.08 0.22 0.84 3.76 17.32 91.0 0.29 1.26 6.02 30.4 196.8 1,812 2.4 14.1 113.1 1,144 10,160

MC 0.08 0.12 0.23 0.66 2.64 10.7 0.29 0.40 0.83 2.7 11.1 82.8 2.4 3.5 8.6 45.8 387

MCLS 0.09 0.13 0.26 0.72 2.66 11.4 0.29 0.41 0.88 2.8 12.0 80.2 2.4 3.5 9.1 51.0 409

ρ
CC 2.51 1.68 1.00 0.54 0.28 0.15 0.42 0.24 0.14 0.08 0.04 0.02 0.35 0.22 0.12 0.07 0.04

MC 2.51 1.79 1.22 0.80 0.51 0.33 0.42 0.27 0.19 0.13 0.10 0.07 0.35 0.24 0.17 0.12 0.09

MCLS 2.50 1.71 1.07 0.64 0.37 0.21 0.42 0.25 0.16 0.10 0.07 0.05 0.34 0.22 0.14 0.09 0.06

Metric (%) -1.0 3.0 7.5 9.5 8.6 6.6 -0.7 1.2 2.2 2.4 2.5 2.4 -0.6 0.3 1.4 1.9 2.1

TABLE I: Summary of results from all experiments. Note that MCLS performance metric is negative for base resolution of all cases
because Local Smoothing is run after the initial optimization has nearly converged, resulting in a slight further improvement to the
objective function.

Fig. 12: Sparsity of Hubo problem constraint Jacobian H . The x-
axis indexes both the m “ 9 degrees of freedom (visible as distinct
slanting traces) as well as the n “ 447 timesteps, for a total of
4023 elements. The y-axis indexes the k “ 2264 constraints (see
Figure 11). For example, the dot-like “islands” in the upper left of
the plot correspond to the pregrasp pose of the robot early in the
trajectory, a constraint which is active for only a single timestep.
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Fig. 13: Hubo problem timing and objective function results.

of its time optimizing only newly added points in upsampled

trajectories, resulting in an 8x speedup over a full trajectory

optimization. Second, after upsampling, the initial trajectory

at the new resolution is much closer to optimal than the

initial trajectory, resulting in fewer iterations needed at higher

resolutions.

With Local Smoothing, for all three of the problems, the

objective function is further reduced by roughly 50%. The

runtime increase, on the other hand, is never over 10%. In

fact, in one case (Arm Door problem, n “ 511), we observe

that Local Smoothing actually improves runtime slightly. We

conjecture that this is a direct result of the second factor

above.

As evident in Table I, for the base resolution in each prob-

lem, Multigrid CHOMP with Local Smoothing outperforms

CHOMP in objective function minimization. This is a con-

sequence of the implementation described in Algorithm 1.

At each resolution, constrained CHOMP is performed until

(approximate) convergence, after which Local Smoothing

is performed. Since Local Smoothing is always applied at

least once, this accounts for the slight reduction in objective

function value.

When testing on the physical HUBO+ robotic platform, we

were able to run the generated trajectories very repeatably

to confirm their smoothness and effectiveness. In the initial

trajectory, the waist joint (bold trace in Figure 1) is only used

to open the door, but not used to reach the door handle. In

the optimized trajectory, however, the waist joint is used to

assist in reaching for the door handle in the first part of the

trajectory. We believe this human-like, emergent behavior to

be a valuable product of our algorithm.



V. CONCLUSIONS AND FUTURE WORK

We have introduced Multigrid CHOMP with Local

Smoothing, a multiresolution approach to speeding up the

constrained CHOMP algorithm while preserving its strengths

in trajectory optimization. We believe that this algorithm will

prove useful in a number of real world behavior generation

tasks, including the upcoming DARPA Robotics Challenge.

In future work, we plan to answer a number of ques-

tions about our approach. The choice of base condition in

recursion awaits more study. A recursion deeper than needed

could introduce extra runtime as well as more error. On the

other hand, if recursion is not performed enough, runtime

will not be significantly improved. Furthermore, our current

implementation assumes a fixed start point and end point to

each trajectory. Using a goal set [4] would allow Multigrid

CHOMP with Local Smoothing to be applied to problems

with flexible targets.

Although we are encouraged by the speedups on the Hubo

problem, we would like even faster performance for the

DRC. We suspect that more careful parameter tuning could

contribute in that regard. Aside from the base resolutions

mentioned above, we picked ad-hoc values for both the

stepsize α, and the relative error tolerance for convergence of

gradient descent. We believe better runtime and performance

could be achieved with more careful parameter search,

especially investigating whether these parameters should be

changed after each upsample.

An efficient parallelized implementation of Equation 6

could also help speed up our approach. In recent years,

multiple promising GPU-based linear algebra systems have

appeared which could assist in solving these types of large-

scale, dense linear systems [13], [14].

An open question, especially for the DRC, is how to

integrate force feedback and/or compliant control to execute

the trajectories produced by our algorithm. So far, we have

applied the algorithm to a free-hanging door with no closer

on it; however, in the future, we expect to need to make more

careful consideration of forces and balancing while executing

trajectories.

Finally, as mentioned in section II, none of our example

problems consider collisions between the robot and its envi-

ronment. However, prior to this work, the chief obstacle to

doing large-scale constrained CHOMP was the prohibitive

runtime, which scales at Opk3q with respect to the number

of constraints k. In contrast, the obstacle avoidance aspects

should scale linearly in the number of timesteps n, assum-

ing an efficient collision response scheme like the signed

distance field approach of [1].
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