
Reinforcement Planning: RL for Optimal Planners

Matt Zucker
Department of Engineering

Swarthmore College
Swarthmore PA, USA

mzucker1@swarthmore.edu

J. Andrew Bagnell
The Robotics Institute

Carnegie Mellon University
Pittsburgh PA, USA

dbagnell@ri.cmu.edu

Abstract— Search based planners such as A* and Dijkstra’s
algorithm are proven methods for guiding today’s robotic
systems. Although such planners are typically based upon a
coarse approximation of reality, they are nonetheless valuable
due to their ability to reason about the future, and to generalize
to previously unseen scenarios. However, encoding the desired
behavior of a system into the underlying cost function used
by the planner can be a tedious and error-prone task. We in-
troduce Reinforcement Planning, which extends gradient based
reinforcement learning algorithms to automatically learn useful
surrogate cost functions for optimal planners. Reinforcement
Planning presents several advantages over other learning ap-
proaches to planning in that it is not limited by the expertise of
a human demonstrator, and that it acknowledges the domain of
the planner is a simplified model of the world. We demonstrate
the effectiveness of our method in learning to solve a noisy
physical simulation of the well-known “marble maze” toy.

I. INTRODUCTION

State-of-the-art robotic systems [1], [2], [3] increasingly
rely on search-based planning or optimal control methods
to guide decision making. Such methods are nearly always
extremely crude approximations to the reality encountered
by the robot: they consider a simplified model of the robot
(as a point, or a “flying brick”), they often model the
world deterministically, and they nearly always optimize a
surrogate cost function chosen to induce the correct behavior
rather than the “true” reward function corresponding to a
declarative task description. Despite this crudeness, optimal
control methods have proven quite valuable because of their
efficiency, and also due to their ability to transfer knowledge
to new domains; given a way to map features of the world
to a continuous cost, we can compute a plan that navigates
a robot in a never-before-visited part of the world. While
value-function methods and reactive policies are popular in
the reinforcement learning (RL) community, it often proves
remarkably difficult to transfer the ability to solve a particular
problem to related ones using such methods [4]. Planning
methods, by contrast, consider a sequence of decisions in the
future, and rely on the principle underlying optimal control
that cost functions are more parsimonious and generalizable
than plans or values.

However, planners are only successful to the extent that
they can transfer domain knowledge to novel situations. Most
of the human effort involved in getting systems to work
with planners stems from the tedious and error-prone task of
adjusting surrogate cost functions, which has until recently
been a black art. Imitation learning by Inverse Optimal
Control, using, e.g. the Learning to Search approach [3],

Fig. 1. Marble maze used for training (top left) and corresponding cost
function learned by our method (top right). The system learns to assign high
costs near holes, and low costs near walls and corners. Despite being trained
on a such a simple maze, the system is able to successfully generalize to
much more difficult problem instances (bottom row).

has proven to be an effective method for automating this
adjustment; however, it is limited by human expertise. Our
approach, Reinforcement Planning (RP), is straightforward:
we demonstrate that crude planning algorithms can be
learned as part of a direct policy search or value function
approximator, thereby allowing a system to experiment on
its own and outperform human expert demonstration.

A. Background and Related Work

Central to this work is the distinction between the “true”
reward function for a robotic system, and the surrogate
reward (denoted here as cost) function used by an optimal
planner. Consider an unmanned ground vehicle (UGV) sys-
tem similar to that discussed in [5]. Modern UGV software
architectures are typically hierarchical planning and control
schemes, as depicted in Figure 2: a coarse global planner
computes a path from the robot’s current position to a distant
goal, and a “local planner” or control policy runs at a much
higher frequency in order to guide the vehicle along the
planned path. The coarse planner for our hypothetical vehicle
may neglect to model the kinematics and dynamics of the
underlying robotic platform, reducing the planning problem
to motion on an 8-way-connected, regularly sampled grid.

The true reward function for the UGV control system may
be simple to write down: it encompasses some assessment of



Expert 
Demonstration

Inverse Optimal 
Control

Reinforcement 
Planning

Robot and world state Reward

ControllerCost Function Planner

Fig. 2. A schematic comparison of Reinforcement Planning (RP) and
Inverse Optimal Control (IOC) in a typical hierarchical planning system.
Solid arrows denote information flow and causal relationships; dotted arrows
indicate feedback from learning algorithms. Note that unlike the proposed
method, IOC receives no feedback about the quality of the plans executed
by the robot.

the current robot state x, evaluated at every control cycle until
termination. For example, the system could incur a reward
of $100 for success, -$100,000 for unrecoverable failure,
and -$0.01 at every timestep otherwise. However, because
the planner reasons over a crude approximation of reality,
it is unable to optimize the true reward function directly.
Instead, the planner reasons about a surrogate cost function,
which might consist of a linear combination of scalar features
associated with a discrete grid state s, such as numerical
estimates of slope, roughness, visibility, traversability, etc.
This disconnect between true reward and surrogate cost
is what makes tuning cost functions difficult for system
designers; their task is to identify a cost function which
implicitly causes the system to behave favorably in terms
of the actual reward.

The Learning to Search (LEARCH) approach [3] removes
the burden of manually parameterizing cost functions by
allowing a system designer to specify the desired output
of the coarse planner. Whereas the goal of optimal control
is to identify a path or trajectory that minimizes a cost
function, Inverse Optimal Control (IOC) schemes such as
LEARCH attempt to find a cost function under which
demonstrated paths or trajectories appear optimal. Although
LEARCH is powerful due to its convex formulation and its
ability to reduce development time for planning systems, the
approach has limitations. First and foremost, it is limited
by the performance of the expert demonstration. A human
may be unskilled at the target task, or worse, unable to
demonstrate it at all. Our Reinforcement Planning method,
on the other hand, propagates the reward signal back through
the controller and planner to the parameters of the underlying
cost function, and is not limited by any expert demonstration.

We also note that planning algorithms have been used
extensively in previous RL work (e.g. Dyna [6]); our work
contrasts with these in embracing the reality that real-world
planners operate on a coarse approximation and must be
trained to have a cost function that induces the correct
behavior; hence, they do not directly optimize the “true”
reward function. Moreover, approaches such as Dyna attempt
to (approximately) solve the full Markov Decision Problem
(MDP) associated with the system. For the types of complex

high-dimensional systems that are considered by hierarchical
planning approaches, the curse of dimensionality makes an
explicit representation of a full value function or policy
corresponding to the solution of such an MDP computa-
tionally intractable. The most crucial distinction is that RP
generalizes to novel problem instances without the need for
further learning.

II. VALUE FUNCTION SUBGRADIENT

The central observation underlying RP is that the value
function computed by an optimal planner possesses a subgra-
dient with respect to the parameters of the cost function. 1 If
a policy for the system (as defined in Section III) is computed
in terms of the planner’s value function, the subgradient of
the value function will appear in the policy gradient wher-
ever the value function appears in the policy. Subsequently,
any gradient based reinforcement learning algorithm can be
straightforwardly extended to consider optimal planners.

The task for a discrete optimal planner is to find the
minimum-cost sequence of actions to transition from a
starting state to a goal state. Let s ∈ S denote a discrete
state, and let a ∈ A denote an action. The successor state
given an action is specified by a state transition model
s′ = succ(s, a) : S × A 7→ S. Denote by ξ(s0) a sequence
of state-action pairs (sk, ak) which starts at s0 and reaches
a goal state in Sgoal ⊂ S. Given a one-step cost function
c(s, a) : S × A 7→ R, the formal task for the planner is to
compute ξ∗(s0), a minimum-cost path from s0 to the goal.
The value Ṽ (s0) of the state s0 is defined as the sum of costs
along that path. The value function Ṽ (s) is then the function
which maps each state s to the corresponding minimum cost:
Ṽ (s) = minξ(s)

∑
(sk,ak)∈ξ(s) c(sk, ak).

Suppose that the cost function is defined as a linear
combination of features defined over state-action pairs,
based on a weighting θ: c(s, a, θ) = θT f(s, a). Then
the subgradient of Ṽ (s, θ) with respect to θ is simply
the sum of the one-step-cost gradients along the optimal
path ξ∗(s), namely the features themselves: ∇Ṽ (s, θ) =∑

(sk,ak)∈ξ∗(s) ∇c(sk, ak, θ) =
∑

(sk,ak)∈ξ∗(s) f(sk, ak).
This “feature counting” interpretation of differential value
has been described before in the derivation of Maximum
Margin Planning and other LEARCH algorithms [3]; how-
ever, instead of directly matching feature counts with those
of an expert as in LEARCH, our goal in Reinforcement
Planning is to provide a way for a learning system to modify
planner values in order to maximize expected reward. 2

III. REINFORCEMENT PLANNING

Let x ∈ X be the full state (or observation) space
for a robotic system, and let u ∈ U be the space of

1A subgradient is a linear lower bound, the analog to the familiar gradient
operator for functions which are convex but not necessarily differentiable.

2We note that in the case of a non-deterministic MDP, the gradient ∇Ṽ
contains expected feature counts encountered on the way to the goal state
as opposed to a deterministic sum of features. Such expected feature counts
can be computed or sampled after solving the coarse MDP using value or
policy iteration (as opposed to deterministic graph search algorithms such
as Dijkstra’s or A*).



s3

s2
s1

u1 u2

u3 s�

x0

s�

x0

u0
s0

s1u1
x1

Fig. 3. Illustration of SARSA(λ)-style (left) and REINFORCE-style (right) gradients under RP. In both cases, gradient terms involve a sum of features
along optimal paths (see Section III-A and Section III-B).

controls. We assume the existence of a coarse-graining
function proj(x) : X 7→ S that maps a full state x
to the corresponding “nearby” state s in the domain of
the planner. An admissible Q-function for Reinforcement
Planning is a function Q(x, u, θ) 7→ R which computes
the relative quality of applying action u at state x in terms
of the optimal cost-to-go Ṽ (s′, θ) for some coarse planner
state(s) s′ that depends on x and u, along with an optional
cost associated with x and u themselves. For example,
assume there is a deterministic state transition function
x′ = succ(x, u) for the system. Then one admissible Q-
function for RP would be to compute the optimal cost-to-go
of the projected successor state, along with a term penalizing
large actions: Q(x, u, θ) = Ṽ

(
proj

(
succ(x, u)

)
, θ
)
+λ‖u‖2.

If, as in a traditional MDP, there is no deterministic state
transition function, we would instead consider the expected
cost-to-go under the distribution p(x′|x, u): Q(x, u, θ) =∫
Ṽ
(
proj(x′), θ

)
p(x′|x, u) + λ‖u‖2 dx′.

We now proceed by constructing a policy (in the RL
sense) around Q, and adapting existing gradient based RL
algorithms to optimize θ based on measured rewards. Any
such gradient based RL algorithm will examine ∇Q, the
gradient of Q with respect to the cost function parameters.
We note that anywhere Ṽ appears in the definition of Q,
so too will ∇Ṽ appear in the expression of ∇Q. Broadly
speaking, the taxonomy of gradient based RL algorithms
can be broken down into those which use value function
approximators, and those which learn policies directly. The
following subsections illustrate how to apply RP in both
cases.

A. Value function approximation
The Q-function defined above can be considered as a

parametric value function approximator. By constructing an
ε-greedy policy around Q, we can learn the cost function
parameters θ via steepest descent on Bellman Error with an
eligibility trace. Let U(x) ⊆ U be the set of actions available
at state x. Then the ε-greedy policy π(x, θ) is

π(x, θ) =

{
arg minu∈U(x)Q(x, u, θ), with p = (1− ε)
random u ∈ U(x), with p = ε

where p denotes the probability of taking an action. We then
execute the policy and accumulate one-sample estimates of

Algorithm 1: RP-VFA algorithm for steepest descent on
Bellman Error with eligibility trace.

1 initialize e(x, u)← 0 for all x, u;
2 initialize ∆← 0;
3 pick initial x, u;
4 while x is not terminal do
5 take action u, observe reward r(x, u) and successor

state x′;
6 choose u′ from π(x′, θ);
7 δ ← r(x, u) +Q(x′, u′, θ)−Q(x, u, θ) ;
8 e(x, u)← e(x, u) +∇Q(x′, u′, θ)−∇Q(x, u, θ) ;
9 foreach previous x, u do

10 ∆← ∆ + δe(x, u);
11 e(x, u)← λe(x, u);
12 end
13 x← x′; u← u′;
14 end
15 θ ← θ + α∆;

the gradient of the Bellman Error

δ = r(x, u) +Q(x′, u′, θ)−Q(x, u, θ)

by combining the residual elimination method of Baird [7]
along with an eligibility trace similar to SARSA(λ) [8].
We call the resulting convergent algorithm RP-VFA, for
Reinforcement Planning via Value Function Approximation,
listed in Algorithm 1.

The left hand side of Figure 3 illustrates the effect of the
gradient term: initially, the system is at state x0 and chooses
action u0 based on the value of the underlying coarse planner
state s0. After executing action u0, the system ends up in
state x1, incurring reward r0 = r(x0, u0). (Note that due
to, i.e. modeling inaccuracy, the state x1 does not project
down to s0; this is exactly the type of coarse approximation
which RP is designed to work with.) The next action chosen
is u1, based on the value of the projected successor state
s1. The gradient of δ above is equal to the difference of
the features encountered along the two optimal paths in the
figure. Note that both optimal paths to the goal merge at the
state s�; hence any features encountered along the shared



Algorithm 2: REINFORCE for direct policy learning
with RP

1 initialize z0 ← 0, ∆0 ← 0 ;
2 initialize t← 0 ;
3 initialize x0;
4 while xt is not terminal do
5 sample ut from p(ut|xt, θ);
6 execute ut, observe reward rt ← r(xt, ut) and

successor state xt+1;
7 zt+1 ← βzt + ∇p(ut|xt,θ)

p(ut|xt,θ)
;

8 ∆t+1 ← ∆t + 1
t+1 (rt zt −∆t);

9 t← t+ 1;
10 end
11 θ ← θ + α∆t ;

subpath from s� to the goal cancel out and do not appear in
the resulting value of ∇δ. See Algorithm 2 for a listing.

B. Direct policy learning

Instead of considering Q as a value function approximator,
we can use it as the basis for a stochastic policy, and sub-
sequently draw upon direct policy learning algorithms such
as REINFORCE [9] to learn θ. We begin by constructing a
stochastic policy p(u|x, θ) around Q:

p(ui|x, θ) =
1

Z
exp

(
− ν Q(x, ui, θ)

)
where Z is the normalizer that causes p(u|x, θ) to sum to
one over all u ∈ U(x), and ν is positive scalar weight.
REINFORCE requires us to compute the score ratio ∇pi/pi.
For the Boltzmann-style distribution defined above, the score
ratio can be expressed as

∇p(ui|x, θ)
p(ui|x, θ)

= −ν (∇Q(x, ui, θ)− Ep [∇Q(x, u, θ)])

At this point, the REINFORCE algorithm (e.g. as derived
in [10]) can be applied straightforwardly. We note that alter-
native policy gradient algorithms besides REINFORCE may
be used; however, generally they will all require computing
the score ratio ∇p/p.

The score ratio for RP is illustrated on the right hand side
of Figure 3: consider the robot at state x0. The respective
probabilities pi of the actions ui are based on the optimal
cost-to-go of the projected successor states si, for i ∈ 1, 2, 3.
Say that we sample action u1. Then the score ratio ∇p1/p1
is defined to be the difference between the sum of features
along the blue path from s1, and the expected features over
all three paths. As with the value function approximation
example, all optimal paths merge at a future planner state
s�, and therefore the features along the common subpaths
cancel each other out when computing ∇p/p.

C. Discussion of RP implementations

As illustrated in Figure 3, the gradient update rules for
both approaches modify the parameters θ based upon ob-
served rewards, and a set of features along optimal paths

to the goal. One interpretation of the RP gradient terms is
to consider them as a comparison of features which differ
among various optimal paths found by the low-level planner.
As a gradient based method, Reinforcement Planning is by
no means guaranteed to converge to a global optimum of
θ for either type of approach. Therefore, initializing θ to
a principled estimate is necessary in practice. If a priori
estimates of θ are not available, using LEARCH or a similar
IOC approach is a suitable initialization method.

IV. EXAMPLE DOMAIN: MARBLE MAZE

The familiar “marble maze” or labyrinth toy (shown
in Figure 4) has been used in the past as a benchmark
application for learning algorithms, particularly imitation
learning [4], [11]. However, previous approaches learned
policies specifically targeted at a specific maze, and failed
to generalize to novel unseen mazes without significant ad-
ditional learning [12]. Just as with more complex dynamical
systems such as legged robots, the marble maze task exhibits
significant momentum effects, and requires reasoning about
the consequences of future actions. We chose to demonstrate
Reinforcement Planning on the marble maze task in order to
show that a very simple planner can produce policies that not
only perform well in the face of dynamics and uncertainty,
but also generalize to novel scenarios.

A. Marble maze dynamics and reward

The marble maze consists of a flat board with raised walls.
An operator may apply forces to the marble by turning
knobs which rotate the board along its x and y axes. The
goal of the game is to successfully navigate the marble
from a starting position to a goal position, avoiding any
number of holes drilled into the board. Falling into a hole
ends the game. We define the state of the marble maze as
x = (px, py, ṗx, ṗy, rx, ry), which combines the 2D position
px, py and velocity ṗx, ṗy of the ball with the current tilt
angles rx, ry of the board. The command for the system
u = (ux, uy) corresponds to desired tilt angles for the board.
The reward for the system depends only upon the state.
Evaluated once per 10 Hz control update until the game has
ended, it is defined as $100 if the goal is reached, -$100 if
the ball falls in a hole, and -$0.01 otherwise.

We model the marble maze in a physical simulation. The
acceleration imparted on the ball by board tilt is given
by: p̈x = g sin(ry), and p̈y = −g cos(ry) sin(rx), where
g = 9.8m/s2. There is additional acceleration due to
rolling friction, which is computed to be proportional to
the velocity of the ball. The coefficient of rolling friction
is µroll = 0.05. Collisions between the ball and a wall result
in an instantaneous reflection of the velocity vector about
the normal of the wall, and damping by a coefficient of
restitution cr = 0.85. After the acceleration and impacts are
computed, the position and velocity of the ball is updated via
the midpoint method. Second-order dynamics of the rotation
of the board are ignored. We assume that the board tilt
is highly position controlled, with no significant dynamics
beyond a maximum velocity constraint.



example maze holes walls wall ends corners

Fig. 4. An example marble maze and features used for planning. All features are computed by convolving, or “blurring”, discretized board geometry
with two different kernel sizes (only one is shown here for each feature).

We also model a variety of adverse effects expected to
be encountered in a true physical system such as control
noise, local variation in µroll and cr, and board warp (local
variation in board tilt). Control noise is drawn from a
normal distribution with mean zero and σu = 0.02rad.
Local variations in the physical parameters are drawn from
a spatially coherent noise distribution [13]. Finally, we also
model differences between the idealized board considered
by the planner and the underlying board used for simulation
by slightly displacing walls and holes in the two models.
Our goal is to learn a policy mapping states to actions using
RP. Again, as expected in a physical system, we present our
policy with a noisy observation of state instead of the true
simulated state of the system.

B. Marble maze planner and policy
As in Figure 2, we create a hierarchical planning archi-

tecture for the noisy marble maze simulation. We construct
a coarse planner that operates over a 2D grid corresponding
to the 2D workspace S of the maze board. Each grid cell
s ∈ S is assigned a set of features f(s) representing aspects
of the board geometry. Features, shown in Figure 4, are
computed as blurred representations of holes, walls, wall
ends, and corners. There are two different kernel radii used
for the blurring. All feature values lie in the interval [0, 1].
We augment the feature vector with the logical complement
of each feature 1−f , and add a constant bias feature of 1.0,
for a total of 17 features in all.

We use Dijkstra’s algorithm [14] to compose a value func-
tion representing the optimal cost-to-go from each grid cell s
to the goal. The one-step-cost is computed as c(s) = θT f(s)
with θ a positive vector of weights. Grid cells lying inside
holes and walls are treated specially by our value function
algorithm: the value function in such location always points
back to the nearest grid cell accessible to the ball. The
policy defined for the marble maze considers a discrete set
of candidate actions. For each action u at state x, we define
the function Q(x, u, θ) = 1

2ku‖u− u
∗(x, θ)‖2 + kvṼ (s′, θ),

where ku and kv are scalar weights, u∗(x, θ) is a commanded
tilt that attempts to align the velocity of the ball with the local
direction of the planner value function, and s′ is the projected
successor state proj(succ(x, u)). Projection is defined as
finding the grid cell nearest to px, py . See the appendix a
derivation of u∗ and its gradient. To apply RP, we simply
take the gradient of Q with respect to θ:

∇Q(x, u, θ) = −ku∇u∗(x, θ)
(
u− u∗(x, θ)

)
+ kv∇Ṽ (s′, θ)

Here, ∇u∗(x, θ) is a 17-by-2 matrix obtained by differenti-
ating the velocity controller with respect to θ, which itself
contains terms based on the subgradient of Ṽ .

V. RESULTS

We used RP with both the RP-VFA algorithm of Sec-
tion III-A as well as the REINFORCE algorithm derived in
Section III-B to learn a cost function for the coarse planner
to solve the noisy marble maze simulation. The initial value
for the weight vector θ was zero for all features, except for
a small positive bias term which encouraged goal-seeking
behavior. Reinforcement Planning was run on a very small
training board for 100 trial episodes with both learning
methods, and the performance was evaluated on the training
board as well as two significantly larger test boards (shown
in Figure 1).

We compared RP to a simple regression algorithm that
attempts to match the one-step-costs of the planner to the
measured rewards in the simulator. The regression algorithm
failed to learn any significant structure of the problem,
presumably due to the fact that it was unable to ascribe any of
the current reward to features previously encountered by the
system. This “smearing” back in time of the correspondence
between rewards and features is handled well by both the
REINFORCE and the RP-VFA algorithms.

Reinforcement Planning, however, was able to success-
fully learn how to solve not only the training board far better
than the initial weights, but it also vastly outperformed the
initial weights and the regression algorithm on the much
larger, and previously unseen, test boards. The results are
summarized in Figure 5. Learning converges after approx-
imately 100 trials; training for many more trials did not
significantly alter performance.

The cost function learned by RP is shown in Figure 1.
Reinforcement Planning confirms human experts’ own intu-
ition about solving the marble maze problem: not only is cost
high near holes, but it is lower next to walls and corners,
presumably because their effect of reducing uncertainty of
the rolling marble dynamics. Furthermore, the system has
discovered the correct weighting of features on its own,
obviating the need for hand-tuning cost function parameters.

VI. CONCLUSION

We have introduced Reinforcement Planning, an extension
to existing reinforcement learning algorithms which allows
them to reason with optimal planners. The key of RP is



0

0.25

0.50

0.75

1.00

Training board Test board 1 Test board 2

Success rate over 100 trials

No learning Regression RP-VFA RP-REINFORCE

-100

-50

0

50

100

Training board Test board 1 Test board 2

Average reward over 100 trials

Fig. 5. Top: Results of experiments on noisy marble maze simulation after
training for 100 episodes.

to define a policy for a learning system in terms of the
value computed by a coarse planner. Computing the gradient
of the policy evaluates the subgradient of the planner’s
value function. Reinforcement Planning can be used in both
value function approximation, and direct policy gradient
settings. We experimentally verified the effectiveness of RP
in learning to control a noisy physical simulation of the
marble maze game.

In future work, we will investigate a number of extensions
to the methods proposed here and implement them on
physical robotic systems as opposed to computer simulations.
We believe it will be straightforward to derive the functional
analogues of the algorithms put forward in Section III-A
and Section III-B: just as MMPBoost [15] is a boosted
version of Maximum Margin Planning [3], so as to derive
boosted versions of RP for automatic feature discovery or
non-linear cost functions. Our derivations of Reinforcement
Planning in this paper have focused on discrete search as
the underlying implementation of optimal planners. However,
other optimal planning and control schemes exist, such
as variational methods which use Pontryagin’s minimum
principle or Differential Dynamic Programming [16], which
operates on continuous state and action domains. We note
that the approach extends straightforwardly by integrating
feature counts along continuous trajectories. Work on a
physical implementation of the marble maze solver has
already begun (see Figure 6); video of the the system
operating using a cost-function based policy is available at
http://www.youtube.com/user/reinforceplan.

Fig. 6. Physical robotic platform for playing the marble maze. Left: the
robot consists of two hobby servos, and an overhead camera. Right: a
computer vision system recognizes the position of the ball and markers
on the board to reconstruct the 3D pose of the system.

APPENDIX: VELOCITY CONTROLLER FOR MARBLE MAZE

We define u∗(x, θ) as a proportional controller on ball
velocity with gain kp. The desired velocity vd comes from the
normalized directional gradient of the planner value function
n(x, θ) with respect to the board x- and y-axes, scaled by a
gain `. The error ε(x, θ) between desired and current velocity
is converted to a commanded tilt by a skew-symmetric matrix
M :

u∗(x, θ) = kpM ε(x, θ)

where

n(x, θ) =

[
∂
∂px
∂
∂py

]
V
(
proj(x), θ

)
vd(x, θ) = `

n(x, θ)

‖n(x, θ)‖
ε(x, θ) = vd(x, θ)− (ṗx, ṗy)T

M =

[
0 −1
1 0

]
To apply RP, we need to compute ∇u∗(x, θ), the 17-by-2
matrix

∇u∗(x, θ) = kp`

(
M
(
I − n̂n̂T

) [ ∂
∂px
∂
∂py

]
∇V

(
proj(x), θ

)T)T
Above, I is the 2-by-2 identity matrix, and n̂ = n(x,θ)

‖n(x,θ)‖ .

REFERENCES

[1] Joel Chestnutt. Navigation Planning for Legged Robots. PhD
thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
December 2007.

[2] C. Urmson et al. Autonomous driving in urban environments: Boss
and the urban challenge. Journal of Field Robotics, 2008.

[3] N. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional
gradient techniques for imitation learning. Autonomous Robots, 2009.

[4] Martin Stolle. Finding and Transferring Policies Using Stored Be-
haviors. PhD thesis, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 2008.

[5] D. Silver, J. A. Bagnell, and A. Stentz. High performance outdoor
navigation from overhead data using imitation learning. In Proc.
Robotics: Science and Systems Conference, June 2008.

[6] R. S. Sutton. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In ICML,
1990.

[7] L. Baird. Residual algorithms: Reinforcement learning with function
approximation. In Proc. International Conference on Machine Learn-
ing, 1995.

[8] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introdution.
MIT Press, 1998.

[9] Ronald J. Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning, 1992.

[10] J. Baxter and P.L. Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 2001.

[11] Darrin Bentivegna. Learning from Observation Using Primitives. PhD
thesis, Georgia Institute of Technology, 2004.

[12] Martin Stolle and Chris Atkeson. Knowledge transfer using local
features. In Proc. IEEE Symposium on Approximate Dynamic Pro-
gramming and Reinforcement Learning, 2007.

[13] K. Perlin. Improving noise. ACM Transactions on Graphics (TOG),
2002.

[14] E.W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[15] Nathan Ratliff, David Bradley, J. Andrew Bagnell, and Joel Chest-
nutt. Boosting structured prediction for imitation learning. In NIPS,
Vancouver, B.C., December 2006.

[16] D.H. Jacobson and D.Q. Mayne. Differential dynamic programming.
Elsevier Publishing Company, 1970.

http://www.youtube.com/user/reinforceplan

	Introduction
	Background and Related Work

	Value Function Subgradient
	Reinforcement Planning
	Value function approximation
	Direct policy learning
	Discussion of RP implementations

	Example Domain: Marble Maze
	Marble maze dynamics and reward
	Marble maze planner and policy

	Results
	Conclusion
	References

